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A tool for classifying the ecological status of lake fish in Britain based on 
eDNA metabarcoding 
 
 

1. Introduction 
 

1.1. The EU Water Framework Directive (WFD) requires that member states develop 
robust methods for assessing the ecological status of freshwater resources using 
different biological quality elements (BQEs). Methods have now been developed and 
successfully intercalibrated for most BQEs in most water body types. However, a 
suitable and cost-effective method for monitoring and assessing status of fish in 
lakes has yet to be developed in Britain, where established invasive methods such as 
gill-netting are strictly controlled and unfeasible in some areas. The WFD normative 
definitions stipulate that methods should consider aspects of fish species 
composition, abundance and age structure of the community that show changes in 
response to anthropogenic impacts.  
 

1.2. In Ireland a gill netting based method, FIL2, was developed and successfully 
intercalibrated against the lake fish assessment method of Finland. FIL2 has been 
adopted for use in Northern Ireland (Kelly et al., 2012). Applying the same principles, 
a gill netting-based method (SFINX) was subsequently developed for use in 
comparable lakes in NW Britain. This uses total fish individuals per unit effort (CPUE), 
total fish biomass per unit effort (BPUE), brown trout CPUE, euryhaline species CPUE 
and number of piscivorous species as the basis for classification (Allen et al., 2016). 

 
1.3. Recent advances in molecular techniques have enabled rapid developments in the 

field of biodiversity monitoring, particularly through analysis of environmental DNA 
(eDNA) (Pawlowski et al., 2018). Research in Britain funded mainly by the EA and 
SEPA has demonstrated that eDNA metabarcoding provides both qualitative and to 
some degree quantitative information on fish communities in large lakes, 
outperforming established methods in terms of the number of species detected 
(Hänfling et al., 2016; Li et al., 2019). Reviewing the potential contribution of eDNA-
based approaches to bioassessment Hering et al. (2018) considered this approach 
especially well-suited to fish assessment on the grounds of representativeness, 
sensitivity, precision, comparability, cost-effectiveness, and environmental impact. 

 
1.4. To date this method has been tested on a limited number of lakes of different size, 

nutrient status and fish density, in NW England, Scotland and Wales. The current 
project expands this testing to cover the full range of lakes and associated fish 
communities represented in Britain and uses the supporting analysis to develop an 
eDNA-based classification tool suitable for reporting the status of lake fish for the 
WFD. Given the limitations of the available data, at this point the proposed tool only 
provides sensitivity to eutrophication, the dominant pressure on European lakes. 
 
 

 



2. Methods 
 

2.1. Biological data collection 
At each lake 20 water samples (2L volume) were collected at roughly equidistant 
points around the perimeter. Samples were collected from surface water (<0.3m 
depth) and location was recorded using GPS. In some smaller lakes 10 samples were 
collected and occasionally 17-21 samples were collected for logistical reasons. Water 
samples were collected from a total of 101 water bodies. Samples were transported 
in insulated cool boxes and filtered through 0.45 µm cellulose nitrate filters (47 mm 
diameter; Whatman, GE Healthcare, UK) within 24 hours of collection. Filters were 
stored at -80oC under sterile conditions prior to eDNA extraction in a dedicated 
laboratory at University of Hull and were assayed by eDNA metabarcoding of the 
mitochondrial 12S region (see Appendix 1 for protocol). The data presented here and 
used as the basis for the classification tool relate exclusively to shore-based samples 
collected during the winter (Dec-March). An evaluation of the merits of different 
sampling effort and onshore vs offshore sampling is provided in Appendix 2. 

 
2.2. Biological data set characteristics 

Forty fish taxa were recorded across the 101 water bodies based on metabarcoding 
of eDNA extracted from water samples. The raw data comprised the number of 
sequence reads per taxon per sample per lake. Of these 40 taxa only 15 occurred 
widely (>20% of water bodies) with 16 taxa confined to <5% of sites. The most 
widely recorded taxa were brown trout, European eel, common perch, three-spined 
stickleback, minnow and pike. Most taxa were resolved to species level but due to 
the limitations of the 12S marker Coregonus and Salvelinus could not be resolved 
beyond genera, while two members of the family Percidae, Perca fluviatilis (common 
perch) and Sander lucioperca (zander), also could not be separated. It is highly 
unlikely that S. fontinalis (brook trout) occurred at any of the sites studied so 
Salvelinus can be assumed to refer to S. alpinus (arctic charr). Zander, if present at 
all, would have been restricted to one or two sites in central or eastern England so 
the label Percidae can be assumed to refer exclusively to Perca fluviatilis in almost all 
cases. 
 

2.3. Environmental data set characteristics 
Sites were matched to their unique WFD waterbody ID and linked to data on 
background environmental characteristics (area, elevation, depth, alkalinity, 
catchment area, connectivity (i.e. length of water courses and area of standing 
waters within the upstream catchment) and catchment land cover via the UK Lakes 
Portal (eip.ceh.ac.uk/apps/lakes). They were also linked to annual mean 
concentrations for chlorophyll a, TP and TON via national agencies data (typically 
based on the last 5 years data) and to the WFD classifications reported in previous 
cycles for a range of biological quality elements (BQEs) and relevant physicochemical 
variables. We used classifications based on multiple cycles since 2009, not only the 
most recent one, on the assumption that, for long-lived organisms such as fish, the 
biological signal will reflect classifications over the last 10 years not only the last 2-3 
years. In 10% of cases a specific lake had not been classified so we were obliged to 
use the status of an adjacent, comparable, directly assessed water body. Given the 

https://eip.ceh.ac.uk/apps/lakes


low variation in status among surrounding water bodies in such situations we 
assume that this is a minor issue and that the reported class would be representative 
of the target water body. 
 

2.4. Based on the available classifications we defined a ‘typical’ class for a water body 
based on the median class reported for the elements listed above across multiple 
cycles, as well as a worst-case class applying the one-out, all-out rule (1oAo) to the 
same data for each cycle. If the worst case changed between cycles we used the one 
most commonly observed, or, in the rare case, of equal numbers of different classes, 
the lowest one. We also created a simple continuously scaled index of status based 
on pre-existing classifications using the principle that H=5 through to B=1, and 
weighting by the number of times each class was reported across all the elements 
considered (i.e. a score of 5 would imply that all elements in all cycles were classified 
as High, while a score of 4.5 implies that 50% of reported classifications were High 
and 50% were Good). 

 
2.5. The morpho-edaphic index (MEI=log (alkalinity (meqL)/mean depth (m)) was 

calculated for all sites to provide a summary measure of background productivity. 
High values of MEI (>0) are associated with base-rich, shallow lakes that are naturally 
productive due to their catchment geology, water column mixing and ability of light 
to reach the lake bed. Low values (<-1.5-2.0) are associated with base-poor, deep 
lakes that are naturally unproductive. A synthetic pressure index for eutrophication 
was constructed using the first axis of a PCA of lake chlorophyll, TP and TON 
concentrations and catchment % agriculture and %urban land covers (derived from 
CEH Land Cover Survey 2015). 
 

2.6. A subset of 28 ‘reference’ sites was identified by reference to pressure data and 
classifications previously reported for TP, phytoplankton, macrophytes, diatoms and 
littoral invertebrates (Appendix 3). Reference sites had low pressure on the 
eutrophication axis (Fig. 1) and were consistently classified as high, or in a small 
number of cases, good status. The term ‘reference’ is used loosely here; fixed or 
type-specific thresholds for pressure were avoided to ensure that sites spanned the 
MEI gradient and these sites simply represent a pool of the best available sites 
(‘good’ sites) within the dataset, assessed independently of information on fish. The 
one exception to this was to exclude six sites with a recent history of rainbow trout 
stocking from consideration as reference sites. These ‘good’ sites were contrasted in 
analyses below with a subset of sites with high pressure that were consistently 
classified at below good status (‘not good’ sites). Other sites, typically classified as 
moderate, good to moderate, or with classifications that varied widely between 
elements were regarded as being of ‘uncertain/intermediate’ quality for the 
purposes of the analysis. 

 
2.7. Testing and choice of fish metrics 

A suite of 40+ metrics was derived from the fish eDNA data representing the 
occupancy (number of samples in which a taxa was detected as a proportion of the  
total samples collected per lake), share of reads per site (total number of read 
counts per taxa in a lake as a proportion of the summed read counts across all fish 
taxa detected in the lake), or mean share of reads per sample (read counts per taxa 



in a sample as a proportion of the summed read counts in that sample, averaged 
across all samples collected from that lake)  for individual species or combinations of 
species (e.g. piscivores, benthivores, salmonids, common bream + common carp, 
rudd + tench). Since some freshwater fish species (perhaps most notably perch) 
display strong ontogenic shifts in diet and/or distribution, guild-based approaches 
may be of limited utility with eDNA-based data since age/size-related information on 
individual taxa is not available. Additional metrics were also prepared based on total 
recorded fish richness and the share of non-native fish species; a community-based 
index was also derived based on the occupancy-weighted optima of each commonly 
recorded species (the 24 species with occurrence in >5 lakes) on the eutrophication 
pressure axis (analogous to an invertebrate ASPT score for fish). Further details of 
this index are given in Appendix 4. 

 
 

 
 
Figure 1. Distribution of the sites in the fish eDNA dataset in relation to the lake morpho-edaphic index 
(MEI; low values = low productivity) and the eutrophication pressure index (a PCA composite axis based 
on TP, chlorophyll and TON concentrations, and agricultural and urban catchment land covers), showing 
the allocation of sites to good (blue), not good (red) and uncertain/intermediate (open black) quality 
used in the exploration of fish metrics. 
 

 
2.8. When using the eDNA data we have taken the view that, given the method and the 

sampling effort, not detecting a species equates to genuine evidence of absence 
rather than simply absence of evidence. In all cases we have treated the data at ‘face 
value’ rather than assigning and excluding potential ‘false positives’ (i.e. the DNA of 
species detected, due to inputs from external sources (e.g. avian deposition, import 
of dead bait by anglers, wastewater discharges), that in reality are absent from the 
ecosystem). Examination of the raw data suggested that <2% of fish taxon x lake 
occurrences could be false positives if simple, arbitrary read count and occupancy 



thresholds are applied and those species plausibly indigenous to a lake are excluded. 
We also took no specific account of known (re)introductions of native fish, such as 
coregonids, on the basis that such knowledge is highly incomplete and selective; 
using this information could imply that all other cases derive from natural 
colonization events which would not be a valid assumption. 
 

2.9. Metrics were screened for their utility in classification using logistic regression with 
MEI as the main environmental covariate and a priori quality (good, not good or 
intermediate) as a factor and the metric as the response. Metrics were considered of 
potential value where there was a significant difference in the parameter estimates 
for the a priori quality, confirming effective separation of the response between 
good versus not good sites. 
 
 
 

3. Results 
 

3.1. Candidate metrics 
For the fish community as a whole, and most of the common component species MEI 
was the major determinant of distribution. Several common species (e.g. three-
spined stickleback, European eel) had a ubiquitous distribution, irrespective of MEI 
and the a priori quality. Others showed strong variation in distribution with respect 
to MEI but were insensitive to quality (e.g. minnow). Six taxon-based metrics using 
roach occupancy (occ), Percidae occ, common carp occ + common bream occ, brown 
trout occ, and other salmonids occ (salmon occ + arctic charr occ + coregonid occ) 
and read share of brown trout, showed potential value for use in classification, being 
able to discriminate between different a priori quality (Fig 2). Generally, occupancy-
based models showed a stronger relationship to MEI and site quality than metrics 
based on read share.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 

   
 
  

 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 

 
Figure 2 Distribution of occupancy values for selected fish metrics in relation to MEI showing effective 
separation of a priori good (blue) and not good (red) quality sites. Lines are illustrative of relationships and 
fitted via locally weighted smoothing. Upper panels show negative indicators (i.e. those that increase with 
pressure for a given MEI), lower panel shows positive indicators (i.e. those that decrease with pressure for a 
given MEI). 
 
 

3.2. Three other derived metrics also showed potential value in classification; summed 
read counts of apex piscivores (i.e. brown trout + pike) expressed as a proportion of 
the total reads of all fish taxa, community eutrophication pressure index, and total 
recorded fish taxon richness (Fig 3).  
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Figure 3. Variation in piscivore share (left) and fish community eutrophication index (right) in relation to 
MEI, and total detected fish richness in relation to MEI and lake area (lower panels) showing effective 
separation of a priori good (blue) and not good (red) quality sites. 

 
3.3. Calculation of expected metric values 

For each of the nine selected metrics the observed values in the subset of good 
quality sites were modelled with MEI and other key environmental variables (lake 
area, altitude, distance to sea) as covariates. For the occupancy- and read share-
based models we used logistic regression, for the community pressure index a 
general linear model and for fish richness a generalized linear model with a poisson 
log link function. These models served to generate the expected metric values for all 
sites assuming no or low pressure. 
 

3.4. Calculation of raw metric EQRs 
The principle of the Observed (O) to Expected (E) ratio was followed in the 
calculation of metric EQRs. For positive indicators, where a higher value of the 
metric indicates higher quality (e.g. brown trout occupancy), EQR = O/E is used, 
whereas for negative indicators, where a higher value of the metric indicates lower 
quality (e.g. roach occupancy), EQR = (worst – O)/(worst – E) is used. The MEI value 
for each water body is used in the logistic regression function to generate the 
predicted (E) values for each metric. For example: 
 

Loch Lomond (South) MEI = -1.92 (based on alkalinity of 0.232meq/L and 
mean depth of 19.5m, MEI = log (0.232/19.5) = -1.92) 
 
Observed (O) occ of brown Trout = 0.9 
Expected (E) occ of brown trout = 1/(1+(2.103*(7.451^-1.92))) = 0.96 
Raw EQR = O/E = 0.9/0.96 = 0.94 
 
Observed (O) occ of roach = 0.85 
Expected (E) occ of roach = =1/(1+(73.702*(0.334^-1.92))) = 0.002 
Raw EQR = (worst – O)/(worst – E) = (1-0.85)/(1-0.002) = 0.15 
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3.5. Transformation and combination of raw metric EQRs 
The candidate list of nine separate metric EQRs was reduced to five (occupancy of (i) 
roach (ii) common carp + common bream (iii) Percidae (iv) brown trout (v) salmon + 
arctic charr + coregonids) by assessing redundancy among metrics and the effect of 
varying combinations of metrics on the strength of the pressure response 
relationship, agreement with independent classifications of ecological status based 
on other BQEs, and ability to discriminate between different a priori quality. Prior to 
being combined each metric raw EQR series was normalized to position values on a 
cumulative probability frequency curve (thus ranging from 0 to 1) defined by the 
mean and SD of that series. Where necessary the raw EQR values were first log 
transformed to remove the influence of outliers. Taking the above example for 
brown trout in Loch Lomond (south) 
 

Log transform the raw EQR series = Log (0.94 +1) = 0.286 
 
Based on the population of log transformed EQR values for brown trout occ 
the overall mean = 0.230 and SD = 0.178 (n=101). 
 
Position the log transformed EQR on a normal cumulative distribution (values 
scaled from 0 to 1) =NORM.DIST(0.286,0.230,0.178,TRUE) = 0.627 

 
3.6. The final combination rule to generate the ‘overall fish EQR’ was a simple averaging 

of the five separate normalized metric EQRs. Alternative weightings of variables or 
averaging various subsets of variables was found to have only a small effect on the 
relationship with the pressure index or pre-existing classifications (Fig 4) compared 
to the gain in complexity. A worked example showing calculation of the overall fish 
EQR is given in Appendix 5. 
 

 
Figure 4. Relationship between the overall lake fish EQR based on eDNA data and the eutrophication pressure 
index (left) and a weighted average of the relevant pre-existing WFD assessments (right). Reference lines show 

HG (blue), GM (green) and MP (orange) class boundaries on fish EQR scale as defined in section 3.10. 
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3.7. These metrics represent a minimum adequate subset that most effectively exploits 
the eDNA metabarcoding data for use in ecological classification. The key principle is 
that sites are ‘rewarded’ (higher EQR) when species are detected that are expected 
to be there in the absence of pressure (e.g. arctic charr or coregonids in low 
productivity lakes) or are absent where expected to be absent (e.g. arctic charr in 
high productivity lakes), but are ‘penalized’ (lower EQR) where species are absent 
where they should be present (e.g. brown trout in moderate productivity sites) or 
are present where they should be absent (e.g. roach in low productivity lakes or 
roach at high occupancy in more productive lakes). Trial inclusion of EQR values for 
other metrics that suggested some with potential value in classification, such as pike 
occupancy, or rudd + tench occupancy, were found to weaken the performance of 
the tool in relation to pressures and the classifications of other BQEs. 
 

3.8. In cases where observed values of all five component metrics were zero (i.e. brown 
trout, salmon, coregonids, arctic charr, roach, perch, bream and common carp were 
all completely absent from a lake) the tool would not be appropriate to classify 
ecological status. In our dataset values were positive for two or more metrics in 88% 
of sites and the scenario of all scoring species being absent never arose. A much 
larger dataset would allow an assessment of the risk of this occurring, and, perhaps, 
an interpretation of any underlying environmental basis. However, given the diverse 
population of lakes considered in our study, we regard it as exceptionally unlikely 
that none of the scoring fish taxa would be detected in a lake where this tool would 
be expected to be applied. 

 
3.9. Sensitivity of tool 

The overall fish EQR displays a highly significant relationship with the eutrophication 
pressure index (r2=0.51; p<0.001, Fig 4) that is of a comparable strength to the 
relationship that other BQEs exhibit with eutrophication indicators in lakes (e.g. 
chlorophyll a or macrophytes vs TP (Lyche-Solheim et al., 2013)). Having selected 
metrics that distinguish between groups of sites defined by their contrasting nutrient 
pressure it is unsurprising to find that the overall fish metric calculated from the 
same dataset is related to a eutrophication gradient, but the strength of the 
relationship is still encouraging. As would be expected there was also a strong 
correlation between the overall fish EQR and a continuous index of ecological status 
(Fig 4) based on other lake BQEs and physico-chemical variables (weighted average 
where values reported as high status score 5, through to 1 for Bad status). 

 
3.10. There was no evidence of sensitivity to hydromorphic pressures. This lack of 

sensitivity may reflect limited size of species pool in low productivity lakes where 
access or hydromorphic pressures are relatively more pronounced, or that such 
pressures are concealed if impacted sites contain relic populations of arctic charr or 
introduced coregonids. Alternatively, training the tool towards assessment of a 
dominant pressure in the form of eutrophication may constrain its sensitivity to 
other pressures, or non-migratory taxa that dominate may simply show low 
sensitivity to hydromorphological pressures. Fish would also be expected to 
demonstrate sensitivity to acidification but the number of sites in the present 
dataset known to be affected by acidification was too small to confirm this, or to 
develop separate metrics to reflect this impact. Age/size structure for populations of 



a widespread focal species such as brown trout may also offer a better basis for 
assessing acidification pressure. 

 
3.11. Class boundary placement. 

The overall fish EQR was compared against the median class for a site based on 
existing WFD classifications using TP, chlorophyll, macrophytes, diatoms and CPET 
across available reporting cycles. Insufficient potential bad status sites were available 
for these to be considered separately so they were pooled with poor status 
(arguably, in the case of fish, bad status might be reserved for lakes lacking fish 
altogether, or perhaps those containing only non-native species, but neither of these 
scenarios were close to arising in our data set). There was a highly significant 
relationship between median class and overall fish EQR (GLM, r2 = 0.54, p<0.001; Fig. 
5), with highly significant (p<0.005) pairwise contrasts between all classes except M 
vs P/B (p=0.11). This indicates that the overall fish EQR can distinguish effectively 
between pre-existing WFD classes based on metrics sensitive to the same suite of 
pressures. The separation between sites classified <G or >G was especially strong. 

 

 
 
Figure 5. Distribution of fish EQR values according to the typical pre-existing WFD assessment of sites 
based on eutrophication relevant metrics. Class boundaries shown (HG=blue, GM=green, MP=orange) 
maximise the agreement between the fish classification and other classifications and minimize the 
classification bias. 

 
 

3.12. Class boundaries were optimized using a matrix of fish-based class versus the median 
class. The median class represents the consensus view of a site with agreement 
between the fish class and the median class representing the ‘least surprising’ 
classification. Starting with the average between the lower CL of the fish EQR in the 
upper median class and the upper CL of the next lower median class the class 
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boundaries were changed iteratively to minimize the class bias and rate of 
misclassification. This indicated boundaries should be placed at HG=0.65, GM=0.42 
and M/P=0.24 (Fig 5). Using these class boundaries 54% of sites were classified using 
fish the same as the median class, with 99% of sites being within one class of the 
median class (Table 1). The fish classification was 0.15 classes more precautionary 
than the median class. The classifications of the 101 lakes are given in Appendix 3. 

 
 
 
 
 
Table 1. Classification of sites according to the overall fish EQR versus the typical pre-existing WFD 
classification based on eutrophication sensitive BQEs or physiochemical variables (left) and the 1oAo 
classification (right) inferred from the same parameters. This analysis refers to classes across multiple 
reporting cycles not only the most recent. Yellow cells = exact agreement. Blue cells =classifications 
differing by more than 1 class. 
 
 

 

  
 
 
 

3.13. Of the 101 sites considered here 67 % were classified as being at high or good status. 
The bias towards high and good status is somewhat to be expected since 70% of 
sites were of low or moderate alkalinity types and 69% had a typical pre-existing 
WFD classification of high or good status. Of the low alkalinity lakes the vast majority 
are classified between the middle of good to high status (Fig. 6). Moderate alkalinity 
lakes cover the full status gradient. Most of the high alkalinity lakes are classified as 
Moderate or Poor status, the notable exceptions being those on hard limestone such 
as the Roman Wall Loughs. 

 
 



 
 
Figure 6. Distribution of the 101 water bodies based on their classification using fish eDNA. The position 
of some markers has been moved slightly to improve visibly. 
 
 

3.14. On the basis of the proposed boundaries 8 sites would have a lower 1oAo 
classification than prior to the inclusion of the fish tool, although only one site (Loch 
Ussie) would move from above to below good status. The fish classification was 0.63 
classes more relaxed than the 1oAo classification (any single method, regardless of 
BQE, will be more relaxed than the 1oAo classification unless that BQE was 
systematically the most precautionary one) with 30% of sites classified as the same  
1oAo class and 92% of sites classified as within one class (Table 1). Using the fish 
classification nine sites were placed two classes more relaxed than the 1oAo 
classification, although most of these were close to a class boundary. 

 
3.15. Intercalibration of proposed method 

Since the Irish gill netting method, FIL2, has already been intercalibrated in Northern 
GIG, one option is to apply this method to sites in the current dataset that also have 
gill-netting data. This data was also used in the development of a gill-netting based 
method specific to Scotland, SFINX. FIL2 was applied to gill netting data for 27 sites in 
the present data set to generate an EQR. The SFINX EQR was also available for 18 of 
these sites.  
 



3.16. The proposed eDNA method was weakly correlated with SFINX (r2 = 0.27; p = 0.03) 
and slightly less well correlated with FIL2 (r2 = 0.21; p = 0.06). However, SFINX itself 
and FIL2 were also very poorly correlated (r2 = 0.12; p = 0.16), despite both being 
based on gill netting data and being developed by the same authors. This raises 
questions over the compatibility of gill netting data from Scotland and NW England 
with that from Ireland, or in the comparability of their fish communities. While both 
FIL2 and the eDNA tool had a similar relationship with the pressure axis over the 
common subset of 27 sites (FIL2: r2 = 0.29; p = 0.004, eDNA: r2 = 0.31; p = 0.002) 
most of these inter-relationships would fall below the thresholds needed for a 
successful intercalibration. 

 
 

4. Discussion & Recommendations 
 

4.1. Freshwater fish are not the easiest of organisms to use in ecological classification, 
being species poor, hard to sample and having a distribution that is sensitive to 
natural or artificial barriers or widespread alteration through introductions. The 
present approach, based on eDNA metabarcoding, offers an effective and non-
invasive alternative for classification of lake ecological status, which generates 
classifications that are largely compatible with those provided by other WFD 
measures and is sensitive to the major pressures affecting lakes. 
 

 
Figure 7. Decision tree illustrating when it is valid to apply the proposed classification method. 

 
 

4.2. Figure 7 provides a decision tree to assess when application of lake fish classification 
in general, and the proposed method specifically, is appropriate. In summary a lake 
should have the potential to contain fish based on its connectivity, or, if not, be 
known to have contained fish, for fish classification methods in general to be 
applicable. Assuming that this applies then water samples for eDNA metabarcoding 
should be collected using compliant approaches. In the event that no fish eDNA is 
detected in these samples the default position is that the site would be classed as 
Bad status. We expect this scenario to be extremely rare and to only apply in lakes 



with well-known problems that are also captured by other BQEs (e.g. history of 
chronic acidification, hypertrophy leading to regular fish kills, or industrial pollution 
(chemical or thermal)). If eDNA is detected from one or more of the species that 
contribute to the metrics used in the described method then eDNA-based 
classification can be applied and the resulting classification used. If not, the site is 
unclassifiable (but Bad status cannot be assumed). 
 

4.3. The sensitivity of the tool in isolated low productivity lakes, where the fish 
community may be naturally restricted to brown trout, plus a few other catholic 
species, such as three-spined stickleback or eel, may be attenuated, but the same 
problem will confront any fish-based tool. For some metrics it is also possible that 
occupancy is influenced by the abundance of other fish taxa that are not themselves 
used as indicators and which vary independently of pressure. For example, large 
populations of pike might potentially reduce brown trout populations in lower 
productivity lakes, or prevent their re-establishment in higher productivity lakes, 
thereby lowering ecological status. However, a larger dataset would be required to 
investigate this.  

 
4.4. The metrics required in the proposed method are easily generated from summary 

level eDNA-based data, do not require interrogation of sample level data, and, being 
based on occupancy, should be relatively insensitive to the influence of false 
positives. Previous studies have confirmed the value of eDNA based approaches for 
fish monitoring, with a close match being found with contemporary gill netting data 
plus detection of additional species not recovered by conventional methods 
(Hänfling et al., 2016; Li et al., 2019). eDNA-based assessments also offer the 
advantages of highly standardisable field survey effort with lower sampling and 
surveyor bias and lower inter-annual variation. These features should be reflected in 
increased confidence of classification. Although not considered as an integral part of 
the present method eDNA-based sampling should also be effective for detecting high 
or low impact invasive non-native fish species at low abundance and may therefore 
contribute to classification over-rides. 
 

4.5. The proposed tool is rather weakly correlated with a gill netting based method, FIL2, 
adopted for use in the island of Ireland. It would be possible to manipulate the 
selection of metrics to optimize the correlation of the eDNA-based tool with FIL2. 
Since this would be at the expense of the performance of the tool in its intended 
region of application it is not advised. Given that the eDNA tool displays close 
agreement with typical classifications of water bodies based on methods which are 
themselves intercalibrated it is suggested that the resultant classifications are fit for 
purpose. FIL2 is a type-specific method that uses lake types that are potentially too 
coarse to be compared with the present tool. It is also heavily reliant on BPUE data 
for the total fish community, native species and perch which may limit its 
comparability with classifications based on eDNA data.  

 
4.6. The dataset involved in the development of this tool is relatively small and therefore 

more subject to the influence of atypical sites. Supplementing it with data from very 
large high status lakes in Scotland and better quality sites in unglaciated regions of 
central or southern England would help to expand the envelope of conditions in 



reference sites. This would allow more effective testing and any necessary 
refinement. Similarly, including more low quality sites (e.g. ultra-acidified, 
industrially polluted, or hypertrophic and prone to fish kills) would be useful in 
resolving the position of the P/B boundary. Applying the fish classification to an 
independent set of test sites covering a similar MEI and pressure gradient would also 
be advantageous. 
 

4.7. The morpho-edaphic index naturally covaries with a NW-SE gradient across Britain 
and will therefore also covary with human population density and pressures 
additional to eutrophication. Diagnosing reduced fish EQR as being specifically due 
to nutrient pressures is therefore not possible. The overall pool of fish taxa also 
diminishes from south to north reflecting the post-glacial history of Britain. This may 
increase the risk of failure in more southerly or highly connected lakes compared to 
northerly or isolated ones, over and above the intrinsically higher levels of pressure 
at these sites. However, the pool of lakes in this study from unglaciated regions was 
small, especially in terms of reference sites, and, even with more data, some of these 
elements of covariation are intractable. 
 

4.8. Determining the origin or native status of fish in a lake is not always straightforward, 
even where supporting information exists. Much information on introductions 
beyond normal ranges or translocations within ranges is incomplete or anecdotal 
and it is difficult to utilize such information in ecological classification, other than 
subjectively. We have taken the pragmatic view that if a population of a fish species 
survives long-term in a lake then the environmental conditions there must be 
conducive to its survival, regardless of its origin. 
 

4.9. False positives, arising from external inputs of the DNA of species not found in the 
water body, are a legitimate concern in all eDNA-based monitoring. Avian 
deposition, especially by piscivores such as cormorants, wastewater inputs from 
STW, hatcheries, camping or waterside restaurants, and inflows from low order 
feeder streams are all relevant to fish in lakes. A source of false positives of perhaps 
unique relevance to lake fish concerns the use of dead bait or commercially available 
feed and synthetic oils by anglers. Inputs from the above wide range of sources 
could therefore contribute towards the pattern shown in Figure 3 where ‘not good’ 
lakes have significantly higher richness than ‘good’ lakes of an equivalent size and 
MEI (although the pattern shown was largely preserved if rare taxa were removed).  
 

4.10. False positives, such as marine taxa detected far inland, are easily excluded, but it is 
more difficult to prove that eDNA-inferred abundance or occupancy of species that 
plausibly exist as live fish in a lake is not influenced by false positives. For example, 
brown trout occupancy might potentially be inflated by false positives in lakes with a 
high density of feeder streams, or after periods of heavy rainfall. In the present study 
rainbow trout are the only species that offer a potential cause for concern in terms 
of the use of eDNA for fish assessment. This species was found in 23 sites. Six of 
these were known to have been stocked and this was consistent with a high read 
share of rainbow trout (>15% of reads) in these sites. In most other sites the read 
share of rainbow trout was negligible (<1%) but a further 6 sites with no history of 
stocking contained rainbow trout DNA at read shares of 1-5%, occasionally combined 



with quite high occupancy (>0.5). The location of these lakes was consistent with 
hatchery, wastewater or angler-related inputs. Using occupancy-based, as opposed 
to read share-based metrics avoids the direct influence of one species on the 
calculation of the share of another, so false positives of rainbow trout are not a 
serious issue. However, one should be aware that certain species, especially those in 
the human food chain, could affect the eDNA signal at some sites. 
 

4.11. In its current form this tool is suitable for reporting the status of fish in water bodies 
where eutrophication is the dominant pressure. The focus of the tool is on metrics 
related to species composition and abundance, where, at least in terms of 
composition this approach consistently outperforms conventional capture methods. 
Information on age/size structure is not currently available through eDNA-based 
approaches. Obtaining a surrogate for this may be possible but would likely require 
significantly increased sampling effort (e.g. temporal replication to identify seasonal 
aggregations or changes in distribution consistent with spawning). However, 
elsewhere in Europe, most lake fish classification methods based on conventional 
capture methods (Ritterbusch et al., 2017) incorporate some aspect of population 
size/age only as a relatively minor component of their classification alongside species 
composition and abundance, implying that this aspect carries less weight in the final 
classification. As such, omitting age/size aspects from an eDNA-based classification 
should not prove overly critical.  
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