

Proposed EQS for Water Framework Directive Annex VIII substances: chlorothalonil *(For consultation)*

by Water Framework Directive - United Kingdom Technical Advisory Group (WFD-UKTAG)

Publisher:

Water Framework Directive - United Kingdom Technical Advisory Group (WFD-UKTAG) SNIFFER 25 Greenside Place Edinburgh EH1 3AA Scotland www.wfduk.org

This report is the result of research commissioned and funded by the Environment Agency.

Author(s):

D Maycock, M Crane, C Atkinson and I Johnson

Research performed: 2008

Dissemination Status: Publicly available

Keywords:

Chlorothalonil, Water Framework Directive, specific pollutants, predicted no-effect concentrations, freshwater, saltwater

Research Contractor:

WRc plc, Frankland Road, Blagrove, Swindon, Wiltshire, SN5 8YF. Tel: +44 1793 865000

Environment Agency's Project Manager:

Stephanie Cole, Evidence Directorate

Collaborators:

Environment Agency

Environment Agency Science Project Number:

SC080021/5a(vi)

© SNIFFER/ENVIRONMENT AGENCY 2012

All rights reserved. No part of this document may be reproduced, stored in a retrieval system or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise without the prior permission of SNIFFER/Environment Agency. The views expressed in this document are not necessarily those of the SNIFFER/ENVIRONMENT AGENCY. Its members, servants or agents accept no liability whatsoever for any loss or damage arising from the interpretation or use of the information, or reliance upon views contained herein.

Use of this report

The development of UK-wide classification methods and environmental standards that aim to meet the requirements of the Water Framework Directive (WFD) is being sponsored by the UK Technical Advisory Group (UKTAG) for WFD on behalf of its member and partners.

While this report is considered to represent the best available scientific information and expert opinion available at the time of its completion, it does not necessarily represent the final or policy positions of UKTAG or any of its partner agencies.

Executive summary

The UK Technical Advisory Group (UKTAG) has commissioned a programme of work to derive Environmental Quality Standards (EQSs) for substances falling under Annex VIII of the Water Framework Directive (WFD). This report proposes predicted no-effect concentrations (PNECs) for chlorothalonil using the methodology described in Annex V of the Directive.

The PNECs described in this report are based on a technical assessment of the available ecotoxicity data for chlorothalonil, along with any data that relate impacts under field conditions to exposure concentrations. The data have been subjected to rigorous quality assessment such that decisions are based only on scientifically sound data. Following consultation with an independent peer review group critical data have been identified and assessment factors selected in accordance with the guidance given in Annex V of the WFD.

Where possible, PNECs have been derived for freshwater and saltwater environments, and for long-term/continuous exposure and short-term/transient exposure. If they were to be adopted as EQSs, the long-term PNEC would normally be expressed as an annual average concentration and the short-term PNEC as a 95th percentile concentration. The feasibility of implementing these PNECs as EQSs has not been considered at this stage. However, this would be an essential step before a regulatory EQS can be recommended.

Properties and fate in water

Chlorothalonil is a broad spectrum, non-systemic, organochlorine fungicide used primarily in agriculture and to a much lesser extent on managed amenity turf. It is also used in approved antifoulant products.

Chlorothalonil is a polychlorinated aromatic compound, but it is atypical in that it does not have the high degree of persistence associated with many other chlorinated organic chemicals. This difference is attributed to the two nitrile groups which activate the molecule. Several of chlorothalonil's primary metabolites are also polychlorinated, and they appear to be more persistent and more mobile than chlorothalonil.

Bioconcentration of chlorothalonil in aquatic organisms is considered to be low to moderate with reported Bioconcentration Factors (BCFs) of 9.4 to 264.

Availability of data

Long-term exposure laboratory data are available for five different freshwater taxonomic groups: algae, crustaceans, fish, insects and macrophytes. Freshwater short-term toxicity data are available for 10 taxonomic groups (algae, amphibians, annelids, crustaceans, fish, insects, macrophytes, molluscs, platyhelminths and rotifers). Based on the information available, algae, crustaceans and fish appear to be similarly sensitive to chlorothalonil at very low concentrations. Macrophytes appear to be at least one order of magnitude less sensitive.

For marine organisms, single species short-term toxicity data are available for six different taxonomic groups (algae, ascidians, crustaceans, echinoderms, fish and molluscs). However, insufficient long-term toxicity data are available to fulfil the minimum requirement of three saltwater taxa (algae, crustaceans and fish) as required

under Annex V of the Water Framework Directive, hence the fresh and saltwater datasets were combined.

In addition, laboratory data are supplemented by freshwater mesocosm data, which suggest that under more natural conditions, toxicity is reduced due to dissipation of cholorothalonil, thus reducing the potential exposure of non-target organisms.

Chlorothalonil is not generally suspected of being an endocrine-disrupting chemical.

Derivation of PNECs

Long-term PNEC for freshwaters

The lowest reliable long-term toxicity value for freshwater organisms is a NOEC of 0.35 μ g l⁻¹ for rainbow trout, *Oncorhynchus mykiss*. Reliable long-term NOECs are available for algae, invertebrates and fish and therefore, an assessment factor of 10 has been applied, resulting in a PNEC_{freshwater_lt} of 0.035 μ g l⁻¹.

This value is lower than the existing EQS of 0.1 μ g l⁻¹ chlorothalonil which was derived by applying a safety factor of 100 to the lowest short-term effects concentration (an asymptotic LC50 for rainbow trout, *Oncorhynchus mykiss*, of 7.6 μ g l⁻¹).

Short-term PNEC for freshwaters

Reliable short-term data are available for algal, invertebrate and fish species, which shows that acute sensitivity to chlorothalonil is comparable across taxa. The lowest reliable short-term result is the 5-day growth inhibition (using the biomass endpoint) EC50 of 8.8 μ g l⁻¹ for the diatom, *Navicula pelliculosa* with a corresponding growth inhibition EC50 (using the more relevant growth rate endpoint) of 14 μ g l⁻¹. Reliable 96-hour LC50 values of 12 μ g l⁻¹ for effects of chlorothalonil on the survival of the freshwater lobster *Astacopsis gouldi* and rainbow trout *Oncorhynchus mykiss* have also been reported. To derive the short-term freshwater PNEC an assessment factor of 10 (given the large body of acute data) was therefore applied to the 96-hour LC50 values of 12 μ g l⁻¹ for *A.gouldi* and *O.mykiss*, resulting in a PNEC_{freshwater st} of 1.2 μ g l⁻¹.

This value is higher than the existing EQS of 1.0 μ g l⁻¹ chlorothalonil which was derived by applying a safety factor of 10 to the lowest reliable short-term effects data (an asymptotic LC50 for *Oncorhynchus mykiss* of 7.6 μ g l⁻¹).

Long-term PNEC for saltwaters

Long-term single species saltwater toxicity data are only available for algae and crustaceans. The most sensitive result is a 28-day NOEC of 0.83 μ g l⁻¹ for the mysid shrimp, *Americamysis bahia*, but this study is not considered reliable enough to be used as the basis of a PNEC. As the saltwater toxicity data values available do not appear to differ markedly from the range obtained for corresponding freshwater species, a combined freshwater and saltwater dataset for marine effects assessment was used to derive the long-term saltwater PNEC. Therefore, the freshwater PNEC is recommended to be adopted to protect saltwater taxa. It is proposed that an additional assessment factor of 10 is applied to account for the paucity of long-term toxicity data for marine species. This results in a PNEC_{saltwater it} of 0.0035 μ g l⁻¹.

This value is lower than the existing guideline EQS of 0.1 μ g l⁻¹ chlorothalonil which was based on the long-term PNEC for freshwaters because of insufficient marine data to set an EQS.

Short-term PNEC for saltwaters

Reliable short-term data are available for six different taxonomic groups (algae, ascidians, crustaceans, echinoderms, fish and molluscs) including the base set of algae, invertebrates and fish. The most sensitive short-term result for saltwater species is a 96-hour shell deposition EC50 of 3.6 μ g l⁻¹ for *Crassostrea virginica*. This is an unpublished study, but a further unpublished study using the same species reported 96-h EC50 values of 5.0 μ g l⁻¹ supporting this sensitive result. In addition, there is a 48-hour EC50 of 6.6 μ g l⁻¹ for developmental effects in the echinoderm *Parcentrotus lividus*. It is therefore recommended that a short-term saltwater PNEC should be based on effects to the mollusc *C. virginica* (3.6 μ g l⁻¹) and an assessment factor of 10. This results in a PNEC_{saltwater_st} = 0.36 μ g l⁻¹.

This value is lower than the existing EQS of 1 μ g l⁻¹ chlorothalonil which was derived by applying a safety factor of 10 to the lowest reliable short-term effects data (an asymptotic LC50 for *Oncorhynchus mykiss* of 7.6 μ g l⁻¹).

PNECs for sediment

The TGD trigger value of a log Koc or log Kow of \geq 3 is met, as reported log Kow and Koc values are in the range 2.91 – 3.05 and 2.9-3.84 respectively. However, there is only limited information with respect to experimental data on sediment toxicity for chlorothalonil and therefore no PNEC_{sediment} can be derived.

PNEC for secondary poisoning

Fish bioconcentration data (as BCF values) for chlorothalonil range from 9.4 to 264, hence the trigger of a BCF >100 is exceeded and the derivation of PNECs for secondary poisoning of predators is required. The lowest relevant NOEC_{food} is 120 mg kg⁻¹ derived from a 2-year study with dogs. Using the highest reported BCF of 264 for the calculation results in a corresponding water concentration of PNEC_{secpois.water} = 4 mg kg⁻¹ prey / BCF (264) = 15 µg chlorothalonil l⁻¹.

This concentration is higher than the proposed long-term PNECs for the protection of freshwater and saltwater organisms. Therefore, if EQS are set on the basis of these PNECs the protection of predators from secondary poisoning would be included, and the derivation of additional quality standards for secondary poisoning is unnecessary.

Receiving medium/exposure scenario	Proposed PNEC (μg Ι ⁻¹)	Existing EQS (µg l ⁻¹)
Freshwater/long-term	0.035	0.1
Freshwater/short-term	1.2	1.0
Saltwater/long-term	0.0035	0.1
Saltwater/short-term	0.36	1.0
Sediment	Insufficient data	None available
Secondary poisoning	15	None available

Summary of proposed PNECs

Analysis

For water, the lowest proposed PNECs derived for chlorothalonil is 0.007 μ g l⁻¹. The data quality requirements are that, at a third of the EQS, total error of measurement should not exceed 50%. Using this criterion, it is evident that current analytical methodologies (non-standard) employing gas chromatography (GC) with electron capture detection or off-line solid-phase extraction followed by high performance liquid chromatography-atmospheric pressure chemical ionization mass spectrometry, are both capable of achieving detection limits of 0.001 μ g l⁻¹. This should offer adequate performance to analyse for chlorothalonil.

Implementation issues

Based on consideration of the information collated within the report and the proposed PNECs the following comments are made re: implementation:-

- Current analytical methods are sensitive enough to assess compliance with the proposed PNECs in receiving waters.
- The freshwater long term and short term PNECs are not subject to excessive uncertainty with assessment factors of 10 being applied to derive the PNECs. The long term saltwater value was derived using an assessment factor of 100. This could be potentially reduced if additional reliable data was available for marine taxa.

Contents

1	Introduction	1
1.1	Properties and fate in water	1
2	Results and observations	2
2.1	Identity of substance	2
2.2	PNECs proposed for derivation of quality standards	2
2.3	Hazard classification	3
2.4	Physical and chemical properties	3
2.5	Environmental fate and partitioning	5
2.6	Effects data	7
3	Calculation of PNECs as a basis for the derivation of quality standards	22
3.1	Derivation of PNECs by the TGD deterministic approach (AF method)	22
3.2	Derivation of PNECs by the TGD probabilistic approach (SSD method)	25
3.3	Derivation of existing EQSs	25
3.4	Derivation of PNECs for sediment	26
3.5	Derivation of PNECs for secondary poisoning of predators	26
4	Analysis and monitoring	32
5	Conclusions	33
5.1	Availability of data	33
5.2	Derivation of PNECs	33
5.3	Analysis	35
5.4	Implementation issues	35
Refere	nces & Bibliography	35
List of	abbreviations	41
ANNEX	I Data quality assessment sheets	43
ANNEX	II Summary data from OPP 2007	57

1 Introduction

The UK Technical Advisory Group (UKTAG) supporting the implementation of the Water Framework Directive (2000/60/EC)¹ is a partnership of UK environmental and conservation agencies. It also includes partners from the Republic of Ireland. UKTAG has commissioned a programme of work to derive Environmental Quality Standards (EQSs) for substances falling under Annex VIII of the Water Framework Directive (WFD). This report proposes predicted no-effect concentrations (PNECs) for chlorothalonil using the methodology described in Annex V of the Directive.

The PNECs described in this report are based on a technical assessment of the available ecotoxicity data for chlorothalonil, along with any data that relate impacts under field conditions to exposure concentrations. The data have been subjected to rigorous quality assessment so that decisions are based only on scientifically sound data.² Following consultation with an independent peer review group, critical data have been identified and assessment factors selected in accordance with the guidance given in Annex V of the WFD. The feasibility of implementing these PNECs as EQSs has not been considered at this stage. However, this would be an essential step before a regulatory EQS can be recommended.

1.1 Properties and fate in water

Chlorothalonil is a broad spectrum, non-systemic, organochlorine fungicide. Chlorothalonil is used primarily as a fungicide in agriculture and, to a much lesser extent, on managed amenity turf. It is also used in approved antifoulant products.

Chlorothalonil is a polychlorinated aromatic compound, but it is atypical in that it does not have the high degree of persistence associated with many other chlorinated organics. This difference is attributed to the two nitrile groups which activate the molecule. Several of chlorothalonil's primary metabolites are also polychlorinated, and they appear to be more persistent and more mobile than chlorothalonil (US EPA RED 1999).

Bioconcentration of chlorothalonil in aquatic organisms is considered to be low to moderate with reported Bioconcentration Factors (BCFs) of 9.4 to 264.

.

¹ Official Journal of the European Communities L327:1–72 (22/12/2000). Can be downloaded from <u>http://www.eu.int/comm/environment/water/water-framework/index_en.html</u>

² Data quality assessment sheets are provided in Annex I.

2 Results and observations

2.1 Identity of substance

Table 2.1 gives the chemical name and Chemical Abstracts Service (CAS) number for chlorothalonil.

Table 2.1Species covered by this report

Name	CAS Number
Chlorothalonil	1897-45-6

2.2 PNECs proposed for derivation of quality standards

Table 2.2 lists proposed PNECs obtained using the methodology described in the Technical Guidance Document (TGD) issued by the European Chemicals Bureau (ECB) on risk assessment of chemical substances (ECB 2003).

Section 2.6 summarises the effects data for chlorothalonil identified from the literature. The use of these data to derive the values given in Table 2.2 is explained in Section 3.

PNEC		TGD deterministic approach (AFs)	TGD probabilistic approach (SSDs)	Existing EQS
Freshwater term	short-	1.2 μg l ⁻¹	_	1.0 µg l⁻¹ (MAC – tentative standard)
Freshwater term	long-	0.035 µg l⁻¹	_	0.1 μg l ⁻¹
				(AA – tentative standard)
Saltwater term	short-	0.36 µg l⁻¹	_	1.0 μg l⁻¹ (MAC – guideline standard)
Saltwater term	long-	0.0035 µg l ⁻¹	_	0.1 µg I ⁻¹ (AA – guideline standard)
Sediment		Insufficient data	-	-
Secondary poisoning		15 µg l⁻¹	_	-

Table 2.2 Proposed overall PNECs as basis for quality standard setting

AA = Annual Average

AF = Assessment Factor

MAC = Maximum Allowable Concentration

SSD = Species Sensitivity Distribution

TGD = Technical Guidance Document

2.3 Hazard classification

Table 2.3 gives the R-phrases (Risk-phrases) and labelling for chlorothalonil.

Table 2.3 Hazard classification

R-phrases and labelling	Reference
R26, 37, 40, 41, 43, 50/53	ECB 2005
S2, 28, 36/37/39, 46, 60, 61	

2.4 Physical and chemical properties

Table 2.4 summarises the physical and chemical properties of chlorothalonil.

Property	Reference	
CAS number	ECB 2005	1897-45-6
Substance name	ECB 2005	Tetrachloroisophthalonitrile
Molecular formula	HSDB 2006	C ₈ Cl ₄ N ₂
Molecular structure	Chemfinder 2005	
Molecular weight	EU DAR 2006 HSDB 2006	265.9
Colour/form	HSDB 2006 EU DAR 2006	White crystalline solid or powder (pure) White or tan powder (technical)
Odour	HSDB 2006	Odourless
Melting point (°C)	HSDB 2006 FAO 2005	250-251°C 252.5-254.5°C
Boiling point (°C)	HSDB 2006	350°C at 760 mmHg
Vapour pressure	HSDB 2006 EU DAR 2006 FAO 2005	5.7 x 10 ⁻⁷ mm Hg at 25°C 7.62 x 10 ⁻⁵ Pa at 25°C 2.2 x 10 ⁻⁴ Pa at 25°C
Density/ specific gravity	HSDB 2006 EU DAR 2003	1.8 at 25°C
Henry's Law constant	HSDB 2006 EU DAR 2006	2.5 x 10 ⁻⁷ atm m ³ mol ⁻¹ at 25°C 2.5 x 10 ⁻² Pa m ³ mol ⁻¹ at 25°C
Water solubility	HSDB 2006/ EU DAR 2006 FAO 2005	0.81 mg l ⁻¹ at 25°C 0.54 mg l ⁻¹ at 25°C; pH7 (distilled water)

Property	Reference	
Solubility in organic solvents (in g l ⁻¹ at 20°C)	EU DAR 2006	acetone 20.6 dichloroethane 22.4 ethyl acetate 13.8 n-heptane 0.20 xylene 74.4 methanol 1.36

Table 2.5 Environmental fate and partitioning of chlorothalonil

Property			
Abiotic fate	Chlorothalonil is expected to exist in both the vapour and particulate phases in the ambient atmosphere. Vapour-phase chlorothalonil is degraded slowly in the atmosphere by reaction with photochemically produced hydroxyl radicals with an estimated half-life of ~ 7 years at an atmospheric concentration of 5 x 10^5 hydroxyl radicals per cm ³ (Meylan and Howard 1993).		
Hydrolytic stability	Chlorothalonil is resistant to hydrolysis at pH 5 and 7; however, chlorothalonil hydrolyzed to 2,5,6-trichloro-4-hydroxy-isophtalonitrile and 3-cyano-2,4,5,6-tetrachlorobenzamide at pH 9 with a half-life of 38.1 d (HSDB 2006). Half-life at 50°C - pH5 > 62 d; pH7 = 14 d; pH9 = 0.28 d; and half-life at 20°C - pH5 = stable; pH7 = stable; pH9 = 16.1 d (FAO 2005).		
Photostability	 Photolysis in sunlit surface waters may occur based on an aqueous photolysis half-life of 65 d (HSDB 2006). Half-life = 10.5 h at equivalent of continuous summer sunlight, at 30°N (FAO 2005). Half-life in water (DT₅₀) of 64.7 d at pH5, 25°C with 12 h sunlight per day (EU DAR 2006). 		
Volatilisation	Volatilisation from water surfaces is not expected to be an important fate process based upon this compound's Henry's Law constant (HSDB 2006).		
Distribution in water/ sediment systems	Koc values of 900 to 7,000 indicate that chlorothalonil is expected to adsorb to suspended solids and sediment (HSDB 2006).		
Degradation in soil	Aerobic biodegradation half-lives of chlorothalonil in four different soils ranged from 10 – 40 d (HSDB 2006).		
Biodegradation in water	Chlorothalonil degrades under aerobic and anaerobic aquatic conditions. Anaerobic half-lives of chlorothalonil in two different flooded soils were ~ 5-15 d. Aerobic DT_{50} in marine water reported as 8.1 and 8.8 d (HSDB 2006). Dissipation from water in the presence of sediment is rapid: 4 – 8 h (Hamer 2003)		
Octanol–water coefficient (log Kow)	3.05 (HSDB 2006) 2.91 at pH 4 and 25°C (FAO 2005) 2.94 at pH 7 and 9 and 25°C (FAO 2005)		

Property	
Log Koc	2.9 – 3.84 (USEPA RED 1999)
Dissociation constant pKa	No dissociation (EU DAR 2006)
Bioconcentration (BCF) values	BCF values of 9.4 to 264 measured in fish (HSDB 2006) suggest bioconcentration in aquatic organisms can be low to moderate. BCF estimated <100 (EU DAR 2006)

BCF = bioconcentration factor

2.5 Environmental fate and partitioning

Table 2.5 summarises information obtained from the literature on the environmental fate and partitioning of chlorothalonil.

The available data indicate that chlorothalonil is rapidly dissipated in aquatic environments. It is rapidly metabolised, with a half life (T¹/₂) of < 2 h in both fresh and saltwater-sediment test systems at 25°C. Initial dissipation is rapid and nonlinear, but residues persist, with approximately 1.6% (9.5 μ g l⁻¹) and 2.6% (16 μ g l⁻¹) of the originally applied concentration (615 μ g l⁻¹) detectable as the parent compound after 30 d in freshwater and saltwater systems, respectively. ¹⁴C-residues could be divided into three fractions: organic soluble, polar water-soluble, and bound (Table 2.6). Two major and three minor metabolites were formed during one study and the pattern of these metabolites was similar in fresh and saltwater systems. The breakdown of chlorothalonil was described in a manufacturer's report as microbial in origin, involving an attack on chlorothalonil by glutathione (or other sulphur species) and it was suggested that this occurred at the sediment interface. It was also predicted that the two major metabolites would undergo further metabolism, resulting in the formation of bound and polar water-soluble residues (Manufacturer's unpublished study, cited in HSE 2002 and Caux 1996).

Type of sediment	% of Total Radioactive Residue			
	Organic soluble	Polar, water-soluble	Bound	
Saltwater – sediment	39 -68	1- 9	28 – 62	
Freshwater - sediment	56 -96	3 – 15	4 – 22	

Table 2.6 Percentage distribution of ¹⁴ C-residu	es
---	----

Davies (1988) carried out a series of experiments to investigate the route and rate of chlorothalonil disappearance in the aquatic environment at different temperatures with different stream substrates. Temperature had a marked effect on the degradation half-life of chlorothalonil: a 10 °C decrease in temperature almost doubled the reported half-lives from 80 h at 15°C to 150 h at 5°C, supporting the conclusion that the degradation was biotic. The presence of a biotic component, in the form of fish or algae, together with aeration was found to increase dissipation, resulting in a half-life of 4.4 h. Aeration alone had no effect.

Hamer (2003) describes two studies, on chlorothalonil dissipation from water, carried out in indoor and outdoor microcosms. In both cases chlorothalonil was applied as a 720 g Γ^1 soluble concentrate formulation. In the indoor microcosm, (nominal water concentration of 25 µg a.i. Γ^1)

containing water, sediment and aquatic plants the half-life was 4 h at approximately 18°C. In replicated outdoor systems containing water, sediment, aquatic plants and invertebrates, two applications of chlorothalonil formulation one week apart both gave similar half-lives of 8 h at approximately 10°C.

Bioconcentration of chlorothalonil in aquatic organisms is considered to be low to moderate with reported Bioconcentration Factors (BCFs) of 9.4 to 264 (HSBD 2006).

2.6 Effects data

A summary of the mode of action of chlorothalonil can be found in Section 2.6.5.

Data collation followed a tiered approach. First, critical freshwater and saltwater data were compiled from existing EQS documents. Further data published after derivation of the current UK EQS were then retrieved from the US Environmental Protection Agency (US EPA) ECOTOX database.³

Further data sources used included:

- ScienceDirect®;⁴
- US EPA Re-registration Eligibility Report (RED) for chlorothalonil (US EPA 1999 referred to in this report as US EPA RED 1999);
- The Health and Safety Executive Biocide and Pesticides Assessment Unit's evaluation report on chlorothalonil: use as a booster biocide in antifouling products (HSE 2002);
- European Commission Draft Assessment Report (Public Version) on chlorothalonil prepared under the Plant Protection Products Directive 91/414/EEC (EU DAR 2006);
- OPP Pesticide Ecotoxicity Database an online US EPA database held by the Office of Pesticide Programs that summarises ecotoxicological data used by the EPA for ecotoxicological assessments. This consists primarily of the endpoint data submitted in support of registration and re-registration of pesticide products (OPP 2007)⁵.

Many of the most sensitive toxicity results are reported in unpublished studies carried out in support of pesticide registration. As only summary information on the tests is provided in compendium reports the Pesticide Safety Directorate was asked to provide additional information where possible. Relevant extracts from the Draft Assessment Report (EU DAR 2006) prepared by the chlorothalonil Rapporteur Member State (RMS) (The Netherlands) under the Directive 91/414/EEC Review process were made available.

All concentrations of chlorothalonil in this report are expressed as active ingredient and all key data were checked for accuracy as far as practicable using the available data. All PNEC values have been derived from studies either using technical grade material or where the results are clearly expressed as active ingredient.

2.6.1 Toxicity to freshwater organisms

Freshwater toxicity data on chlorothalonil are available for various taxonomic groups including algae, invertebrates and fish as required for the application of the approach specified in the EU Technical Guidance Document (TGD) (ECB 2003). Long-term data are available for five taxonomic groups including algae, crustaceans, fish, insects and macrophytes. Freshwater short-term toxicity data are available for ten taxonomic groups including algae, amphibians, annelids, crustaceans, fish, insects, macrophytes, molluscs, platyhelminths and rotifers (Table 2.7).

³ <u>http://www.epa.gov/ecotox/</u>

⁴ http://www.sciencedirect.com/

⁵ Http://www.ipmcenters.org/Ecotox/index.cfm

Type of data	Taxonomic groups for which information is available
Long-term	Algae, crustaceans, fish, insects and macrophytes
Short-term	Algae, amphibians, annelids, crustaceans, fish, insects, macrophytes, molluscs, platyhelminths and rotifers

Table 2.7 Summary of available freshwater data for chlorothalonil

Overall, the available short-term and long-term toxicity test data and that from mesocosm and field studies indicate that for chlorothalonil sensitivity is similar across taxa with the exception of macrophytes which appear to be significantly less sensitive.

The data were also evaluated to assess whether differences in toxicity were due to different physical formulation effects (e.g., the use of the same chemical formulation but including either technical grade material or an emulsifiable concentrate). Where comparative data are available the majority of species show small differences in effects after exposure to formulations or technical material, expressed as active ingredient (a.i.). A comparison of acute toxicity of chlorothalonil and chlorothalonil formulations to selected taxa is shown in Table 2.8.

Table 2.8	Comparison	of	acute	toxicity	to	different	taxa	of	chlorothalonil	and
	chlorothaloni	l foi	rmulatio	ons (data	fror	n EU DAR	2006)			

Species	Endpoint	Value (µg a.i. l⁻¹)									
		Technical grade material	Bravo 720 formulation	75WG formulations	Daconil 2782 Extra						
Pseudokirchneriella subcapitata ⁶	72-96 h EC50	120	-	83- 158	-						
Daphnia magna	48 h EC50	54 - 117	97	38 - 84	344						
Onchorhynchus mykiss	96 h EC50	17 - 76	33	25 - 30	80						

Diagrammatic representations of the available freshwater data (cumulative distribution functions) for chlorothalonil are presented in Figure 2.1 for long-term data and Figure 2.2 for short-term data.

These diagrams include all data regardless of quality and provide an overview of the spread of the available data. However, they are not species sensitivity distributions and have not been used to derive chlorothalonil PNECs.

The lowest critical freshwater data are presented in Table 2.9 for long-term toxicity data and Table 2.10 for short-term toxicity data. These tables do not contain all the available toxicity data but only those which are considered most relevant to the derivation of PNECs.

⁶ Formerly known as *Selenastrum capricornutum*

Proposed EQS for Water Framework Directive Annex VIII substances: chlorothalonil (For consultation)

The data in Tables 2.9 and 2.10 indicate that the toxicity of chlorothalonil and its formulations occurs over a fairly tight concentration range. The formulation of chlorothalonil shows a negligible difference in toxicity from the technical material.

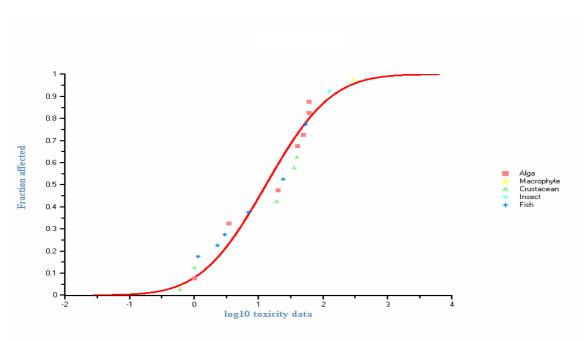
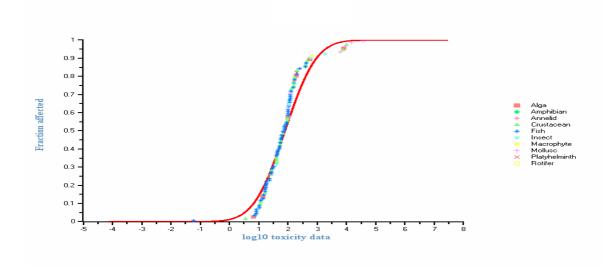



Figure 2.1 Cumulative distribution function of freshwater long-term data (μ g a.i. l⁻¹) for chlorothalonil

Figure 2.2 Cumulative distribution function of freshwater short-term data (μg a.i. I⁻¹) for chlorothalonil

Chemical formulation	Scientific name	Common name	Taxonomic group	Effect	Endpoint		Conc. (μg a.i. l ⁻¹)		Toxicant analysis ²	Comments	Reliability (Klimisch	Reference
(% purity)			9.000				μg α γ				Code*)	
Algae	•	•	•	•				•	•			
	Pseudokirchneriella subcapitata ⁷	Green alga	ALG	Growth inhibition	LOEC	72 h	1.0	S	n	T=25°C	3	Fernandez-Alba et al. (2002)
Technical grade (98.1%)	Navicula pelliculosa	Diatom	ALG	Growth inhibition	NOEC	5 d	3.5	S	u		1	EU DÀR (2006)
Technical grade (98.1%)	Navicula pelliculosa	Diatom	ALG	Growth inhibition	NOEC	5 d	3.9	S	u		С	OPP (2007)
Daconil 2787 extra (40%)	Scenedesmus subspicatus	Green alga	ALG	Growth inhibition	NOEC	72 h	6.5	S	у		1	EU DAR (2006)
Technical grade (98.1%)	Anabaena flos-aquae	Blue-green alga	ALG	Growth inhibition (growth rate)	NOEC	5 d	20	S	n	рН 7 – 7.6	4	Cited in RIVM (2001) and EU DAR (2006)
	Scenedesmus subspicatus	Green alga	ALG	Growth rate	NOEC	96 h	40	-	u	-	4	ISK Biotech (1993) cited in Crane <i>et al.</i> (1995)
Higher plant	ts	•	•					•	•	•	•	
Technical grade 98.1%	Lemna gibba	Duckweed	MAC	Growth inhibition	NOEC	14 d	290	S	u	-	С	EU DAR (2006), OPP (2007)
Invertebrate	S											
75WG formulation (75%)	Daphnia magna	Waterflea	CRU	Reproduction	NOEC	21 d	0.5	SS	У		1	EU DAR (2006)
Technical grade (99.18%)	Daphnia magna	Waterflea	CRU	Parental generation survival	NOEC	21 d	0.6	SS	у	pH 7-7.4 hardness 150 -200 mg CaCO₃ l ⁻¹		FAO (2005)/RIVM (2001), EU DAR (2006)
Daconil 2787 extra	Daphnia magna	Waterflea	CRU	Reproduction	NOEC	22 d	<0.92	SS	У		1	EU DÁR (2006)

Table 2.9 Most sensitive long-term aquatic toxicity data for freshwater organisms exposed to chlorothalonil

⁷ Formerly known as Selenastrum capricornutum Proposed EQS for Water Framework Directive Annex VIII substances: chlorothalonil (For consultation)

Chemical formulation (% purity)		Common name	Taxonomic group	Effect	Endpoint		Conc. (µg a.i. l⁻¹)	Exposure ¹	Toxicant analysis ²	Comments	Reliability (Klimisch Code*)	Reference
(40%) Technical grade (99.2%)	Daphnia magna	Waterflea	CRU	Reproduction	NOEC	21 d	19	SS	,	pH 7-7.4 hardness 150 -200 mg CaCO₃ l ⁻¹		RIVM (2001)
Technical grade (98.8%)	Daphnia magna	Waterflea	CRU	Reproduction		21 d	35	f	У	T=22°C pH 7.8-8.2 hardness 172 mg CaCO₃ l ⁻¹		FAO (2005), HSE (2002), RIVM (2001)
Technical grade (98.1%)	Chironomus riparius	Midge	INS	Reproduction	NOEC	28 d	125	S	n	рН 6.2-8.4		FAO (2005), RIVM (2001)
Fish												
Commercial formulation	Oryzias latipes	Japanese medaka	FIS	Skewed sex ratio	Effect	7 d	0.06	SS	n	T=25°C	3	Teather <i>et al.</i> (2005)
Daconil 2787 Extra (40%)	Oncorhynchus mykiss	Rainbow trout	FIS	Growth and survival	NOEC	21 d	0.35	u	У		1	EU DAR (2006)
Daconil 2787 (40.4%)	Oncorhynchus mykiss	Rainbow trout	FIS	Survival	NOEC	21 d	2.3	SS		T=15°C hardness 88 mg CaCO₃ I ¹	4	ISK Biotech (1989) cited in Caux (1996)
Technical grade (96%)	Pimephales promelas	Fathead minnow	FIS	Reproduction	NOEC LOEC	§	3 6.5	f	,	T=25°C pH 6.5- 7.3 hardness 30 mg CaCO ₃ r ¹	С	Shults <i>et al.</i> (1980) cited in EU DAR 2006, USEPA RED (1999
Technical grade (99.18%)	Oncorhynchus mykiss	Rainbow trout	FIS	Growth	NOEC	21 d	7	f	,	pH 7.1 hardness 150 -200 mg CaCO₃ l ^{⁻1}		RIVM (2001) EU DAR (2006)

* See Annex I and Annex II for explanation, C = Core data, equivalent to Klimisch code 1 ¹ Exposure: s = static; ss = semi-static; f = flow-through ² Toxicant analysis: y = measured; n = not measured; u = unknown ALG = alga, CRU = crustacean, FIS = fish, INS = insect, MAC = macrophyte

LOEC = lowest observed effect concentration

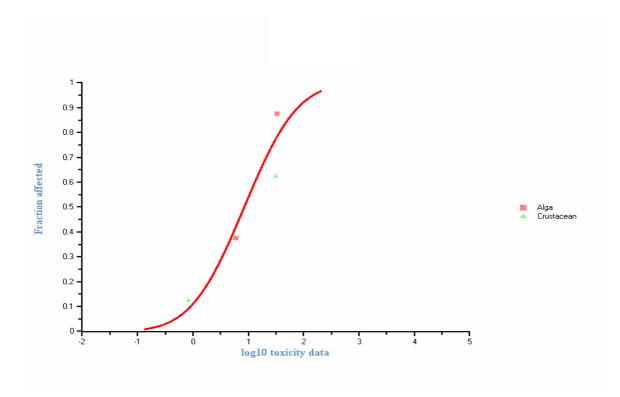
NOEC = no observed effect concentration

§ Reported duration time varies with report from 24 to 45 weeks. This was a two generation study. The NOEC for the first generation was also 3 µg l⁻¹

Table 2.10 Most sensitive short-term aquatic toxicity data for freshwater organisms exposed to chlorothalonil

Chemical formulation (% purity)	Scientific name		Taxonomic group	Effect	Endpoint		Conc. (µg a.i. Г ¹)	Exposure ¹	Toxicant analysis ²	Comment s	Reliability (Klimisch Code*)	Reference
Algae												
Technical grade	Pseudokirch- neriella subcapitata	Green alga	ALG	Growth inhibition	EC50	72 h	6.8	S	n	T=25°C	3	Fernandez- Alba <i>et al.</i> (2002)
Technical grade (98.1%)	Navicula pelliculosa	Diatom	ALG	Growth inhibition (Biomass)	EC50	5 d	8.8	S	У		1	EU DAR (2006)
Technical grade 98.1%	Navicula pelliculosa	Diatom	ALG	Growth inhibition	EC50	5 d	14	S	u		С	OPP (2007)
30% formulation	Chlorella pyrenoidosa	Green alga	ALG	Growth inhibition (Growth rate)	EC50	96 h	100	S	n	T=25°C	2	Ma <i>et al.</i> (2002)
Higher plant	S						_	_				
Technical grade (98.1%)	Lemna gibba	Duckwee d	MAC	Growth inhibition	EC50	14 d	510	-	u		1	EU DAR (2006)
Technical grade (98.1%)	Lemna gibba	Duckweed	MAC	Growth inhibition	EC50	14 d	630	S	u		С	OPP (2007)
Invertebrate	S	+	•	•	- !			- <u>i</u>	- <u>-</u>	•		
Technical grade (i 98%)	Astacopsis ≥gouldi	Freshwater lobster	CRU	Survival	LC50	96 h	12	f	У	T=12°C	1	Davies <i>et al.</i> (1994)
Technical grade (98.1%)	Chironomus riparius	Midge	INS	Immobility	EC50	48 h	15	u	У		1	EU DAR (2006)
Technical	Paratya ≥australiensis	Shrimp	CRU	Survival	LC50	96 h	16	f	У	T=12°C	1	Davies <i>et al.</i> (1994)

Chemical formulation (% purity)		name	Taxonomic group	Effect	Endpoint	duration	(µg a.i. l ^{⁻1})	Exposure ¹	Toxicant analysis ²	Comment s	Reliability (Klimisch Code*)	Reference
Technical grade	Brachionus calyciflorus	Rotifer	ROT	-	EC50	24 h	24	-	u	-	4	Hamer and Gentle (1999) cited in EU DAR (2006)
Technical grade	Daphnia magna	Waterflea	CRU	Immobility	EC50	48 h	28	S	n	T=20°C	2	Fernandez- Alba <i>et al.</i> (2002)
Technical grade	<i>Leptocerus</i> sp	Caddis fly	INS	-	EC50	48 h	38	-	u	-	4	Hamer and Gentle (1999), cited in EU DAR (2006)
Technical grade	Lymnaea stagnalis	Pond snail	MOL	-	EC50	48 h	100	-	u	-	4	Hamer and Gentle (1999), cited in EU DAR (2006)
Technical grade	<i>Erpodella</i> sp.	Leech	ANN	-	EC50	48 h	160	-	u	-	4	Hamer and Gentle (1999), cited in EU DAR (2006)
Technical grade	<i>Planaria</i> sp.	Flatworm	PLA	-	EC50	48 h	200	-	u	-	4	Hamer and Gentle (1999), cited in EU DAR (2006)
Vertebrates (fish and amphib	ians)			•			•			•	
Unknown	mykiss	Rainbow trout		Survival	LC50	Asym- ptotic	7.6	f	n	T=16°C DO= 5.1 mg l ⁻¹	3	Davies and White (1985)
Technical grade	· · · · · ·	Rainbow trout		Survival	LC50	96 h	12	SS	u	GLP study	4	IUCLID (2000)
Technical grade (≩ 99%)		Common jollytail	FIS	Survival	LC50	96 h	16.3	f	У	T=16°C	2	Davies and White (1985)
Technical grade	Oncorhynchus mykiss	Rainbow trout	FIS	Survival	LC50	96 h	17	u	У		1	EU DAR 2006


formulation	Scientific name	Common name	Taxonomic group	Effect	Endpoint		Conc. (μg a.i. Γ ¹)	Exposure ¹	Toxicant analysis ²	Comment s	Reliability (Klimisch Code*)	Reference
(% purity) (99.18%)											coue)	
Technical		Rainbow trout	FIS	Survival	LC50	96 h	17.1	f	у	T=13°C	2	Davies and White (1985)
Dragon Daconil 2787 (12.9% a.i.)		Fathead minnow	FIS	Survival	LC50	7 d	22.6	SS	У	T=25°C		Sherrard <i>et al.</i> (2003
		Bluegill sunfish	FIS	Survival	LC50	96 h	26.3	f	u	-	С	OPP (2007)
	Bufo bufc japonicus	Toad	AMP	Survival	LC50	48 h	160	S	n	T=25°C		Hashimoto and Nishiuchi (1981) cited in ECOTOX database

* See Annex I and Annex II for explanation, C = Core data, equivalent to Klimisch code 1
 ¹ Exposure: s = static; ss = semi-static; f = flow-through
 ² Toxicant analysis: y = measured; n = not measured; u = unknown
 ALG = alga, AMP = amphibian, ANN = annelid, CRU = crustacean, FIS = fish, INS = insect, MAC = macrophyte, MOL = mollusc, PLA = platyhelminth, ROT = rotifer
 EC50 = Concentration effective against 50 per cent of the organisms or animals tested
 LC50 = Concentration lethal to 50 per cent of the organisms or animals tested

2.6.2 Toxicity to saltwater organisms

Single species short-term toxicity data for chlorothalonil for saltwater organisms are available for six different taxonomic groups: algae, ascidians, crustaceans, echinoderms, fish and molluscs. Long-term toxicity data are available for algae and crustaceans. Long-term toxicity data for saltwater species are summarised in Table 2.11 and short-term toxicity data are summarised in Table 2.12. A diagrammatic representation of all the available long-term saltwater data (cumulative distribution function) for chlorothalonil is presented in Figure 2.3. A similar diagram for short-term data is presented in Figure 2.4. These diagrams include all data regardless of quality and provide an overview of the spread of the available data. The diagrams are not species sensitivity distributions and have not been used to set the chlorothalonil PNECs.

Figure 2.3 Cumulative distribution function of saltwater long-term data (μg a.i. l⁻¹) for chlorothalonil

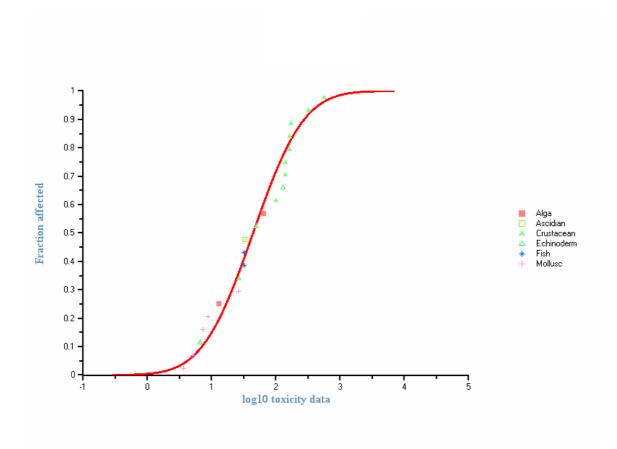


Figure 2.4 Cumulative distribution function of saltwater short-term data (μ g a.i. I⁻¹) for chlorothalonil

	Scientific	Common	Taxonomic	Effect	Endpoint			Exposure ¹	Toxicant	Comments	Reliability	Reference
formulation (% purity)	name	name	group			duration	(µg a.i. l⁻¹)		analysis ²		(Klimisch Code*)	
Algae												
Technical grade (98.1%)	Skeletonema costatum	Diatom	ALG	Growth inhibition	NOEC	14 d	5.9	S	u	-	С	OPP (2007)
Technical grade	Dunaliella tertiolecta	Green alga	ALG	Growth inhibition	NOEC	96 h	33.3	S	n	T=25°C	2	DeLorenzo and Serrano (2003)
Invertebrate	es											
Technical grade (98%)	Americamysis bahia	Mysid shrimp		Reproduction	NOEC LOEC	28 d	0.83 1.1	f	У	Salinity 31 33‰	- 3	Shults and Hoberg (1991) cited in EU DAR (2006) RIVM (2001) HSE (2002)
Technical grade (98%)	Palaemonetes pugio	Grass shrimp	CRU	No. of moults	LOEC	20 c pulsed exposure	133.3	SS	n	T=25.3°C Salinity 20 ‰	2	Key <i>et al.</i> (2003)

Table 2.11 Most sensitive long-term aquatic toxicity data for saltwater organisms exposed to chlorothalonil

* See Annex I and Annex II for explanation, C = Core data, equivalent to Klimisch code 1, S = supplemental data, equivalent to Klimisch code 2
 ¹ Exposure: s = static; ss = semi-static; f= flow-through
 ² Toxicant analysis: y = measured; n = not measured; u = unknown
 ALG = alga, CRU = crustaceans
 NOEC = no observed effect concentration

formulation (% purity)	Scientific name	Common name	Taxonomic group	Effect	Endpoint	Test duration	Conc. (μg a.i. l ⁻¹)	Exposure ¹	Toxicant analysis ²	Comments	Reliability (Klimisch Code*)	Reference
Algae												
Technical grade (98.1%)	Skeletonema costatum	Diatom	ALG	Growth inhibition	EC50	14 d	13	S	u	-	С	OPP (2007)
	Dunaliella tertiolecta	Green alga	ALG	Growth inhibition	EC50	96 h	64	S	n	T=25°C	2	DeLorenzo and Serrano (2003)
Invertebrate	s											
Technical grade	Crassostrea virginica	Eastern oyster	MOL	Shell deposition	EC50	96 h	3.6	-	u	-	4	US EPA RED (1999)
Technical grade (96%)	Crassostrea virginica	Eastern oyster	MOL	Shell deposition	EC50	96 h	5	f	У	T= 14-16°C Salinity 22‰		Shults <i>et al.</i> (1983) cited in EU DAR (2006)
Technical grade	Paracentrotus lividus	Sea urchin	ECH	Development	EC50	48 h	6.6	S	n	T=20°C	2	Bellas (2006)
Technical grade	Mytilus edulis	Edible blue mussel	MOL	Development	EC50	48 h	8.8	S	n	T=15°C	2	Bellas (2006)
Technical grade (98%)	Amphiascus tenuiremis	Copepod	CRU	Survival	LC50	96 h	27	S	у	T=20°C Salinity 30‰ males only	1	Bejarano et al. (2005)
Technical grade	Ciona intestinalis	Sea squirt	ASC	Settlement	EC50	48 h	33	S	n	T=15°C	2	Bellas (2006)
Technical grade (98%)		Grass shrimp	CRU	Survival	LC50	96 h	49.5	SS	n	T=25.3°C Salinity 20‰	2	Key <i>et al.</i> (2003)
Fish	, 0		•				_	•	-			
Technical grade	Cyprinodon variegatus	Sheepshead minnow	FIS	Survival	LC50	96 h	32	S	n	-	С	HSE (2002), OPP (2007)
0	Leiostomus xanthurus	Spot		Survival	LC50	48 h	32	f	n	T=11°C Salinity 22‰	4	Mayer (1987) cited in Caux (1996)

Table 2.12 Most sensitive short-term aquatic toxicity data for saltwater organisms exposed to chlorothalonil

* See Annex I and Annex II for explanation, C = Core data, equivalent to Klimisch code 1 ¹ Exposure: s = static; ss = semi-static; f= flow-through ² Toxicant analysis: y = measured; n = not measured; u = unknown ALG = alga, ASC = ascidian, CRU = crustacean, ECH = echinoderm, FIS = fish, MOL = mollusc

EC50 = Concentration effective against 50 per cent of the organisms or animals tested, LC50 = Concentration lethal to 50 per cent of the organisms or animals tested

2.6.3 Toxicity to sediment dwelling organisms

Reliable data on the toxicity of chlorothalonil in sediment to sediment-dwelling organisms were not found in the open literature. FAO (2005) report a NOEC of 125 μ g l⁻¹ (initial water concentration) or 0.95 mg/kg (sediment concentration at end of study) from a 28-day static long-term toxicity test with *Chironomus riparius*, a sediment-dwelling midge. No other details are available and therefore it is not possible to assess the quality or relevance of this result.

2.6.4 Endocrine-disrupting effects

The list of purported endocrine disruptors compiled by the Institute of Environment and Health (IEH 2005) does not list chlorothalonil. Andersen *et al.* (2002) found that chlorothalonil was very cytotoxic to both CHO and MCF-7 cells, even at low concentrations, rendering cellular assays unsuitable for evaluating the potential hormone-disrupting effects of this substance. The US EPA does not class chlorothalonil as a known or suspected endocrine disruptor, based on developmental and reproductive toxicity studies in rats and rabbits (USEPA 2004).

Teather *et al.* (2005) report a skewed sex ratio in favour of females in Japanese medaka (*Oryzias latipes*) after exposure to 0.06 μ g l⁻¹ chlorothalonil for 7 days, however, there are issues with the reliability of this study. The test substance used was an un-named commercial formulation and the test was carried out at a single concentration with no analytical confirmation of the exposure concentration.

2.6.5 Mode of action of chlorothalonil

Plants

The target organisms for chlorothalonil are fungi. The fungitoxic mode of action is to bind and deplete cellular glutathione (GSH), effectively inhibiting glucose oxidation. Glutathione is a peptide that occurs widely in plant tissues and plays an important role in biological oxidation-reduction processes and the activation of some enzymes.

Aquatic animals

Glutathione also occurs widely in animal tissues. Tests on channel catfish (*Ictalurus punctatus*) found that enhanced toxicity resulted from GSH depletion (Gallagher *et al.* 1992). The exact mechanism of action is unknown, but the authors suggested that once GSH stores were depleted, chlorothalonil was free to react with sulfhydryl groups of critical functional proteins. Other studies have shown that chlorothalonil inhibits essential thiol-dependent cellular enzymes including GAPDH and NADPH oxidase, which are involved in glycolysis and superoxide production respectively (Baier-Anderson and Anderson 1998a, 1998b, 2000).

2.6.6 Mesocosm and field studies

Freshwater mesocosm and field studies

Ernst *et al.* (1991) studied the cumulative effects of three direct aerial applications of formulated chlorothalonil (Bravo 500 at a rate of 875 g a.i. ha⁻¹) on aquatic organisms in a 0.2 ha pond. The applications were made at weekly intervals. Measured concentrations sampled just below the water surface immediately after each spray event ranged from $150 - 2900 \ \mu g \ i^{-1}$. Acute toxicity was monitored using caged water boatman (*Sigara alternata*), caddisfly larvae (*Limnephilus* sp.), freshwater clam (*Pisidium* sp.), crawling water beetle (*Haliplus* sp.), scud (*Gammarus* spp.), midge larvae (Chironomidae), threespine stickleback and one year old trout rainbow trout. Water boatman and threespine stickleback suffered mortality from exposure to chlorothalonil. Mortality in the other invertebrates could not be attributed to chlorothalonil, and no mortality was observed in rainbow trout. This result was unexpected as the initial concentrations in the water were well above LC50 values for rainbow trout. The trout in this study were described as one year old (no other measurements given), whereas trout used in laboratory tests are described as fingerlings weighing 3 - 4 g. Therefore the larger size of the fish used could have contributed to the lower sensitivity. In addition, it is possible that the dissipation rate in the pond was sufficient to rapidly reduce the exposure concentration to below the laboratory LC50 value.

An outdoor aquatic mesocosm study looked at the effect of chlorothalonil (as a 720 g Γ^1 SC formulation) on aquatic invertebrates, algae and aquatic plants. Application was at 3, 10, 30, 100 and 300 µg a.i. Γ^1 to replicated systems at weekly intervals (though the actual duration was not stated). The NOEC was 10 µg Γ^1 , with short-term effects on the phytoplankton community apparent at 30 µg Γ^1 and above. There was recovery of phytoplankton at all concentrations within the duration of the study. At 100 and 300 µg Γ^1 there were effects on the zooplankton populations and although recovery was apparent, significant differences in the communities remained at the end of the study. The authors concluded that concentrations up to 30 µg Γ^1 would have no significant impact on aquatic invertebrate and algal/plant communities, which could be taken to represent a LOEC (Ashwell *et al.*, 2002 cited in Hamer 2003).

An unpublished aquatic field study (Hutchinson *et al.*, 1982 cited in US EPA RED 1999) reported exposure concentrations of 0.6 μ g l⁻¹ and 1.1 μ g l⁻¹ for water and 31 kg l⁻¹ and 51 kg l⁻¹ for sediment in two ponds adjacent to a soybean site. No mortality of pond organisms was observed in the study. This submission was considered supplemental, in part because only one site was studied and the conditions did not represent a reasonable worst case high runoff scenario, however this does not invalidate the findings.

In summary, these mesocosm data suggest that under more natural conditions chlorothalonil toxicity is lower than under laboratory conditions, probably due to dissipation, which reduces the potential exposure of non-target organisms.

Saltwater mesocosm and field studies

No data from mesocosm or field studies using saltwater organisms were found.

3 Calculation of PNECs as a basis for the derivation of quality standards

3.1 Derivation of PNECs by the TGD deterministic approach (AF method)

3.1.1 **PNECs for freshwaters**

PNEC accounting for the annual average concentration

For the freshwater environment, data are available for the 'base set' of toxicity tests (i.e., tests with algae, crustaceans and fish) and therefore the EU TGD assessment factor (AF) method can be applied (ECB 2003). Long-term data were available for five taxonomic groups (algae, crustaceans, fish, insects and macrophytes) for chlorothalonil. Based on the information available algae, crustaceans and fish appear to be of similar sensitivity to chlorothalonil. Table 2.9 summarises the most sensitive long-term freshwater toxicity data that were found.

The lowest long-term result for algae is a 72-hour growth LOEC of 1.0 μ g l⁻¹ for *Pseudokirchneriella subcapitata* (Fernandez-Alba *et al.* 2002; Table 2.9). The algal growth inhibition test was reported to be performed in accordance with OECD Guideline 201 using a commercially available algal toxicity test kit, but the publication suggests a number of deviations. The inoculum level was 2 orders of magnitude higher than that recommended in the guideline and details of the methodology are limited. For example, there is no mention of agitation/aeration of the vessels and there is no indication whether the effect is based on growth rate or biomass. In addition the result reported in the Fernandez-Alba *et al.* (2002) study is lower than other values reported for this species. A 5-day NOEC of 50 μ g l⁻¹ is reported in USEPA RED (1999), and a geometric mean for 72-96 h NOECs for this species is reported as 33 μ g l⁻¹ in EU DAR (2006) but no further details are given.

The remaining long-term results available for algal species are all unpublished studies provided by manufacturers in support of their products and are reported in various regulatory reviews (USEPA RED 1999, RIVM 2001, HSE 2002, EU DAR 2006 shown in Table 2.9). The next lowest long-term result is a 5-day growth inhibition NOEC of $3.5 \ \mu g \ \Gamma^1$ for *Navicula pelliculosa* which has been evaluated in the Draft Assessment Report (EU DAR, 2006). As part of this process the study was peer reviewed and considered reliable for use in the risk assessment. However, no further details of the study were obtained.

The one available long-term study with macrophytes is also an unpublished study and reports a 14-day growth NOEC of 290 μ g l⁻¹ for *Lemna gibba* (Table 2.9). This would suggest that macrophytes are not as sensitive as other taxa. This study has also been evaluated in the EU DAR (2006) and was considered reliable for use in the risk assessment. However, no further details of the study were ascertained.

The six long-term results available for the invertebrate *Daphnia magna* are all unpublished studies reported in various compendium documents (USEPA RED 1999, RIVM 2001, HSE 2002, EU DAR 2006 shown in Table 2.9). These indicate that this species is sensitive to chlorothalonil, with 21-day NOEC values ranging from $0.5 - 39 \ \mu g \ l^{-1}$. The 21-day NOEC for effects on reproduction of 0.5 $\ \mu g \ l^{-1}$ was derived from results with a chlorothalonil 75WG formulation and was the value selected for the initial risk evaluation of chlorothalonil under the 91/414/EEC review process.

For fish Teather *et al.* (2005) reported high toxicity to the Japanese medaka (*Oryzias latipes*) in the form of reduced activity and skewed sex ratio. The fish were exposed for 7 days to a single test concentration of 0.06 μ g l⁻¹ and at this concentration no effects were seen on survival, time to hatch or foraging ability. These tests were of intermediate duration, were non standard concentration-response studies, and there was no analytical confirmation of the test concentration. Therefore the results are not readily interpretable and not appropriate for use in the derivation of the PNEC.

Four other long-term studies are available in Table 2.9. The most sensitive result is a 21-day NOEC of 0.35μ g l⁻¹ (mean measured value) for effects on the growth/survival of rainbow trout (*Oncorhynchus mykiss*) exposed to the commercial chlorothalonil formulation Daconil 2787. This study has been evaluated in the EU DAR (2006) and was considered to be a key endpoint in the chronic risk assessment for fish.

The long-term *D. magna* results and the comparison of acute toxicity data in Table 2.8 suggest that there is no significant difference in toxicity after exposure to technical grade chlorothalonil or formulations when the data is expressed on an a.i. basis. Therefore, it is proposed that the long-term freshwater PNEC for chlorothalonil should be based on the NOEC for effects on the fish *O. mykiss* (0.35 μ g l⁻¹) and an assessment factor of 10 because of the availability of long-term data for three trophic levels. This results in:

$PNEC_{freshwater_{lt}} = 0.35 \ \mu g \ l^{-1}/AF \ (10) = 0.035 \ \mu g \ l^{-1} \ chlorothalonil$

Since chlorothalonil has been shown to dissipate rapidly it is unlikely that aquatic habitats would be exposed to chlorothalonil for sufficiently long to result in chronic toxicity unless field application is repeated, allowing a continuous release of herbicide into the water body, or there is a continuous discharge from a point source. The PNEC calculated above is, therefore, likely to be conservative under most natural conditions.

PNEC accounting for a maximum allowable concentration

Freshwater short-term toxicity data are available for ten taxonomic groups (algae, amphibians, annelids, crustaceans, fish, insects, macrophytes, molluscs, platyhelminths and rotifers). Table 2.10 summarises the most sensitive short-term freshwater toxicity data found for chlorothalonil and its formulations.

Sensitivity to chlorothalonil is comparable across taxa, with the exception of macrophytes, which appear to be the least sensitive group (Table 2.10). The lowest reported result is the 72-hour growth EC50 of 6.8 μ g l⁻¹ for the green alga *P. subcapitata* but is not considered reliable for the reasons described for the corresponding NOEC value. The lowest short-term result considered reliable is the 5-day growth inhibition (using the biomass endpoint) EC50 of 8.8 μ g l⁻¹ for the diatom *Navicula pelliculosa*. The corresponding growth inhibition EC50 (using the more relevant growth rate endpoint) is 14 μ g l⁻¹. This study has been evaluated in the EU DAR (2006) and as part of this process the study was peer reviewed and considered reliable for use in the risk assessment. However, no further details of the study were ascertained.

Reported short-term values for invertebrates range from 12 to 200 μ g l⁻¹ (see Table 2.10). The lowest reliable value is considered to be 96-hour LC50 values of 12 μ g l⁻¹ for effects of chlorothalonil on the survival of the freshwater lobster *Astacopsis gouldi* (Davies *et al.* 1994).

Fish studies which have produced reliable 96-h LC50 values indicate that fish species are sensitive to acute exposure to chlorothalonil with values ranging from 12.0 to 26.3 μ g l⁻¹ for various species (see Table 2.10). It should be noted that the lowest value reported of 10.6 μ g l⁻¹ (Davies and White 1985) was seen in a study carried out at low dissolved oxygen concentrations and is therefore not considered appropriate for setting the PNEC. However, the 96-hour LC50 value of 12 μ g l⁻¹ for effects on the survival of rainbow trout (*Oncorhynchus mykiss*) is considered to be the lowest reliable value (EU DAR 2006).

To derive the short-term freshwater PNEC it is proposed that the 96-hour LC50 values of 12 μ g l⁻¹ for *A.gouldi* and *O.mykiss* are used. Based on guidance in the TGD on effects assessment for intermittent releases [Section 3.3.2 of Part II of the TGD (ECB 2003)] and the fact that there is a considerable acute toxicity database for freshwater organisms, an assessment factor of 10 rather than 100 should be applied to the lowest reliable data for *A.gouldi* and *O.mykiss*. This results in:

$PNEC_{freshwater_{st}} = 12 \ \mu g \ I^{-1}/AF \ (10) = 1.2 \ \mu g \ I^{-1} \ chlorothalonil$

3.1.2 PNECs for saltwaters

The effects database for saltwater species is considerably smaller than that for freshwater organisms. Short-term toxicity data are available for six different taxonomic groups (algae, ascidians, crustaceans, echinoderms, fish and molluscs) and long-term data are available for algae and crustaceans. The limited saltwater toxicity data do not differ markedly from the range of values obtained for corresponding freshwater species (Tables 2.9 and 2.10). Therefore, since there are no obvious differences in the sensitivity of freshwater or saltwater species of the same taxonomic group, the TGD approach of using a combined freshwater and saltwater dataset for the saltwater effects assessment can be used. Therefore, proposed freshwater PNECs should be considered in deriving corresponding values for saltwater bodies.

PNEC accounting for the annual average concentration

The lowest reported long-term NOEC of 0.83 μ g l⁻¹ for reproduction in the mysid shrimp, *Americamysis bahia* is from an unpublished study. Mortality in the control group was 23% (both replicates) and 23 and 53% in the solvent control. The number of offspring/female/reproductive day was 0.51 and 0.96 in the control group, and 0.30 and 0.31 in the solvent control, but was not statistically significantly different (Student t-test). In the analysis of the results from the treatment concentrations data were compared to pooled control groups. This study was evaluated in the EU DAR (2006) and the result was considered unreliable. Other long-term data given in Table 2.11 range from a 14-day NOEC of 5.9 μ g l⁻¹ for effects on algal (*Skeletonema costatum*) growth inhibition to a 20-day LOEC of 33.3 μ g l⁻¹ for effects on moulting in the grass shrimp *Palaemonetes pugio*.

It is proposed that the derivation of the long-term saltwater PNEC for chlorothalonil is based on the 21-day NOEC for the effects on the growth and survival of rainbow trout *Oncorhynchus mykiss* (0.35 μ g l⁻¹). This involves the use of an assessment factor of 10 because of the availability of long-

term data for three trophic levels. It is also proposed that an additional assessment factor of 10 is applied to account for the paucity of long-term toxicity data for marine species. This results in:

$PNEC_{saltwater_{lt}} = 0.35 \ \mu g \ l^{-1}/AF \ (100) = 0.0035 \ \mu g \ l^{-1} \ chlorothalonil$

PNEC accounting for a maximum allowable concentration

Saltwater short-term toxicity data are available for six different taxonomic groups: algae, ascidians, crustaceans, echinoderms, fish and molluscs. Table 2.12 summarises the most sensitive short-term saltwater toxicity data found for chlorothalonil and its formulations.

The most sensitive short-term result for saltwater species is a 96-hour shell deposition EC50 of 3.6 μ g l⁻¹ for *Crassostrea virginica*. This is an unpublished study, but another unpublished study using the same species reports a 96-h EC50 value of 5.0 μ g l⁻¹ supporting this sensitive result. This latter study was evaluated in the EU DAR (2006) and the result was a key value in the risk assessment. The functional importance of this endpoint is not necessarily clear but it is considered useful for determining concentrations at which certain chemicals affect physiological functions in oysters. The next most sensitive result is a 48-hour developmental EC50 of 6.6 μ g l⁻¹ for *Parcentrotus lividus*, a representative of the echinoderms, a key taxonomic group which is exclusively saltwater in distribution (Bellas 2006), Overall, when the other short-term studies that are available are considered, the weight of evidence suggests that a PNEC based on the oyster shell deposition endpoint should be sufficiently protective.

It is therefore recommended that a short-term saltwater PNEC should be based on effects on the mollusc *C. virginica* (3.6 μ g l⁻¹) and an assessment factor of 10. This results in:

$PNEC_{saltwater_{st}} = 3.6 \ \mu g \ l^{-1}/AF \ (10) = 0.36 \ \mu g \ l^{-1} \ chlorothalonil$

Since data is available for exclusively marine species such as echinoderms then it is not proposed to apply an additional assessment factor of 10.

3.2 Derivation of PNECs by the TGD probabilistic approach (SSD method)

The minimum number of long-term toxicity data (at least 10 NOECs from eight taxonomic groups) required by the TGD is not available. Therefore, the species sensitivity distribution (SSD) approach cannot be used for PNEC derivation. The EU DAR (2006) derived an HC5 value of 1.0 μ g l⁻¹ based on an SSD for NOEC data for 9 species from 5 taxonomic groups (algae, crustaceans, fish, insects and macrophytes).

3.3 Derivation of existing EQSs

Some of the critical data used to derive PNECs in Section 3.1 were not available to Crane *et al.* (1995). The freshwater annual average (AA) for chlorothalonil was derived by applying a safety factor of 100 to the lowest reliable LC50 for rainbow trout, an asymptotic LC50 of 7.6 μ g l⁻¹, resulting in an EQS of 0.1 μ g l⁻¹. A tentative maximum allowable concentration (MAC) of 1.0 μ g l⁻¹ was derived by applying a safety factor of 10 to this same LC50 value.

Based on the few data available on the toxicity of chlorothalonil to saltwater organisms, the view was taken by Crane *et al.* (1995) that saltwater and freshwater species have similar sensitivities. Therefore, the EQS proposed for the protection of freshwater organisms were considered adequate for the protection of saltwater life and the same values were proposed as guideline EQS.

3.4 Derivation of PNECs for sediment

The TGD trigger value of a log Koc or log Kow of ≥ 3 is met, as the reported log Kow is 2.91 – 3.05 (FAO2005, HSDB 2006) and log Koc 2.9 – 3.84 (equivalent to Koc of 900 to 7000) (USEPA RED 1999). However, there is only limited information with respect to experimental data on sediment toxicity for chlorothalonil and therefore no PNEC_{sediment} can be derived.

3.5 Derivation of PNECs for secondary poisoning of predators

3.5.1 Mammalian and avian toxicity data

Several reviews have been published on chlorothalonil toxicity to mammals (JMPR 1992, EHC 1996, IUCLID 2000, ESR Reports 2000, EU DAR 2006). As the most recent, the EU DAR 2006, ESR Reports and the IUCLID reviews have been assumed to contain the most sound and comprehensive mammalian data. For this reason, these were the primary sources used. However, the two other reviews were also consulted. Additional literature searches were performed from 2006 to the present day to locate any lower effects data published since 2006, and one further study was located.

For avian data, due to the lack of relevant data in the aforementioned reviews, a comprehensive literature search was performed to locate any relevant data.

Table 3.1 Most sensitive mammalian and bird oral toxicity data relevant for the assessment of secondary poisoning

Type of study, reference & result	Details
Sub-chronic toxicity to mammals	
Shults <i>et al.</i> (1983) Cited in EHC (1996) Sub-chronic NOAEL = 15 mg kg ⁻¹ diet (stated to be 3 mg kg ⁻¹ bw d ⁻¹)	Male and female CD-1 mice (15/sex/group) received chlorothalonil via their diet for 13 weeks at doses of 0, 7.5, 15, 50, 275 or 750 mg kg ⁻¹ diet (approximately 0, 1.5, 3, 10, 55 and 150 mg kg ⁻¹ bw d ⁻¹). There were no effects on clinical condition, mortality, body weight gain and food consumption. The NOAEL was based on increased kidney weights in females at the top three doses.
Wilson <i>et al.</i> (1985) Cited in ESR Report (2000) Sub-chronic NOAEL = 50 mg kg ⁻¹ bw d ⁻¹ (mice) Sub-chronic NOAEL = 10 mg kg ⁻¹ bw d ⁻¹ (rats)	Rats and mice (strain unspecified) received chlorothalonil orally (route of administration unspecified) for 90 days at unspecified doses. Hyperplasia of fore-stomach mucosa and in the S2 segment of the proximal renal tubule was observed. The NOAEL was based on unspecified changes to renal pathology. No further details about this study were available.
Anon Cited in EU DAR (2006) Sub-chronic NOAEL = 1.5 mg kg ⁻¹ bw d ⁻¹	Rats (strain unspecified) received chlorothalonil orally (route of administration unspecified) for 90 days at unspecified doses. The NOAEL was based on unspecified histopathological changes in stomach and kidneys and increased organ weights in kidneys. The original reference was not stated.
Chronic toxicity studies in mammals	
Anon Cited in ESR Report (2000) Chronic NOAEL = 150 mg kg ⁻¹ bw d ⁻¹	Dogs (strain unspecified) received chlorothalonil for 1 year at doses up to 500 mg kg ⁻¹ bw d ⁻¹ (route of administration unspecified). Significantly decreased body weight gain and increased absolute liver and kidney weights were observed. The NOAEL was based on decreased body weight gain at the top dose of 500 mg kg ⁻¹ bw d ⁻¹ . The original reference was not stated.
Holsing and Voelker (1970) Cited in JMPR (1992) Chronic NOAEL = 120 mg kg ⁻¹ diet (stated to be 3 mg kg ⁻¹ bw d ⁻¹)	Male and female Beagle dogs (8/sex/group) received chlorothalonil in their diet for 2 years at doses of 0, 60 or 120 mg kg ⁻¹ diet (approximately 0, 1.5 and 3 mg kg ⁻¹ bw d ⁻¹). The NOAEL was based on no treatment-related effects being observed at the highest dose employed.
Paynter and Busey (1966) Cited in JMPR (1992) Chronic LOAEL = 1500 mg kg ⁻¹ diet (stated to be 37.5 mg kg ⁻¹ bw d ⁻¹) (lowest dose employed)	Male and female Beagle dogs received chlorothalonil via their diet for 2 years at doses of 0, 1500, 15000 or 30000 mg kg ⁻¹ diet (stated to be 0, 37.5, 375 and 750 mg kg ⁻¹ bw d ⁻¹). Absolute and relative thyroid and kidney weights and liver to body weight ratios were increased at the top two doses. Histopathological changes occurred in the liver, thyroid, kidney and stomach at the top two doses. The LOAEL was based on these histopathological changes, irregular body weight reduction and borderline anaemia and was the lowest dose level employed.

Carcinogenicity studies in mammals	
NTP (1978) Carcinogenic NOEL = 10 126 mg kg ⁻¹ diet (approximately 1220 mg kg ⁻¹ bw d ⁻¹) (highest dose employed)	Male and female B6C3F1 mice (50/sex/group) received chlorothalonil via their diet for 80 weeks at doses of 0, 5063 or 10126 mg kg ⁻¹ diet (approximately 0, 610 and 1220 mg kg ⁻¹ bw d ⁻¹) followed by observation for 11 to 12 weeks. No tumours were observed at any dose level.
Wilson <i>et al.</i> (1987) Cited in EHC (1996) Carcinogenic NOEL = 15 mg kg ⁻¹ diet (stated to be 1.6 mg kg ⁻¹ bw d ⁻¹) for hyperplasia/hyperkeratosis in the fore-stomach (not relevant for humans) Carcinogenic NOEL = 40 mg kg ⁻¹ diet (stated to be 4.5 mg kg ⁻¹ bw d ⁻¹) for tubular hyperplasia.	Male Charles River CD-1 mice (60/group) received chlorothalonil via their diet for 2 years at doses of 0, 15, 40, 175 or 750 mg kg ⁻¹ diet (approximately 0, 1.6, 4.5, 19.4 and 83.3 mg kg ⁻¹ bw d ⁻¹). At the highest dose employed, kidney weights and incidences of tubular hyperplasia were increased, which were only slightly increased at 175 mg kg ⁻¹ diet (approximately 19.4 mg kg ⁻¹ bw d ⁻¹). The lower NOEL was based on the increased incidence of hyperplasia and hyperkeratosis of the fore-stomach between 40 and 750 mg/kg diet (approximately 4.5 and 19.4 mg kg ⁻¹ bw d ⁻¹) (this effect is not considered to be relevant for humans). The higher NOEL was based on hyperplasia of the renal tubules.
Wilson <i>et al.</i> (1983) Cited in EHC (1996) Sub-chronic NOAEL = 3 mg kg⁻¹ bw d ⁻¹	Male and female rats (strain unspecified) (25/sex/group) received chlorothalonil in their diet for 13 weeks at doses of 0, 1.5, 3, 10 or 40 mg kg ⁻¹ bw d ⁻¹ . Increased kidney weight was observed at doses >3 mg kg ⁻¹ bw d ⁻¹ , increased liver weight was observed at the top dose and the incidence of hyperplasia and hyperkeratosis of the fore-stomach squamous epithelium occurred at the top two doses; the latter of which returned to normal on cessation of treatment.
Wilson <i>et al.</i> (1989) Cited in EHC (1996); ESR Report (2000); EU DAR (2006) Carcinogenic NOEL = 1.8 mg kg ⁻¹ bw d ⁻¹ based on effects on the fore- stomach Carcinogenic NOEL = 3.8 mg kg ⁻¹ bw d ⁻¹ based on effects on the kidneys	Male and female Fischer 344 rats (65/sex/group) received chlorothalonil in their diet for 23 and 26 months (males) and 29 months (females) at doses of 0, 1.8, 3.8, 15 or 175 mg kg ⁻¹ bw d ⁻¹ . A small increase in kidney weight was observed at 3.8 mg kg ⁻¹ bw d ⁻¹ and at \geq 3.8 mg kg ⁻¹ bw d ⁻¹ there was an increased incidence and severity of epithelial hyperplasia in the proximal convoluted tubules. The lower NOEL was based on treatment-related increases in the incidence of renal tubular adenoma and carcinoma. The higher NOEL was based on squamous cell adenomas and carcinomas of the forestomach occurring in both sexes.
NTP (1978) Carcinogenic LOEL = 5063 mg kg ⁻¹ diet (approximately 253 mg kg ⁻¹ bw d ⁻¹) (the lowest dose employed)	Male and female Osborne-Mendel rats (50/sex/group) received chlorothalonil via their diet for 80 weeks at doses of 0, 5063 or 10126 mg kg ⁻¹ diet (approximately 0, 253 and 506 mg kg ⁻¹ bw d ⁻¹) followed by observation for 30 to 31 weeks. The LOEL was based on the occurrence of adenomas and carcinomas of the renal tubular epithelium that occurred at all dose levels and was the lowest dose employed.

Reproductive and developmental toxicity in mammals	
Farag <i>et al.</i> (2006) Reproductive NOAEL = 100 mg kg ⁻¹ bw d ⁻¹	Pregnant ICR (CD-1) mice received sublethal doses of chlorothalonil via oral gavage on gestation days 6 to 15 at doses of 0, 100, 400 or 600 mg kg ⁻¹ bw d ⁻¹ . Maternal effects at the top two doses included weakness and depression in maternal activity and reductions in body weight and weight gain. Foetal effects included reduced number of live foetuses, early resorption and decreased mean foetal weight in the top two doses.
Cited in EU DAR (2006) Reproductive NOAEL = 22.6 mg kg ⁻¹ bw d ⁻¹	Rats (strain unspecified) received chlorothalonil orally (route of administration unspecified) at unspecified doses for an unspecified duration. The NOAEL was based on decreased pup weight and unspecified histopathological changes in the stomach at parentally toxic doses. Original reference not stated.
Lucas and Benz (1990) Cited in JMPR (1992) Reproductive NOAEL = 1500 mg kg ⁻¹ diet (stated to be 75 mg kg ⁻¹ bw d ⁻¹)	In a two-generation reproduction study, male and female Charles River CD rats orally received (route of administration unspecified) chlorothalonil for 10 (F0) and 14 (F1) weeks prior to mating and continually from mating at doses of 0, 500, 1500 or 3000 mg kg ⁻¹ diet. At the time of mating, low-dose males and females consumed approximately 25 and 32 mg kg ⁻¹ bw d ⁻¹ , respectively; mid-dose males and females consumed approximately 75 and 100 mg kg ⁻¹ bw d ⁻¹ , respectively; and high-dose groups consumed approximately 156 and 205 mg kg ⁻¹ bw d ⁻¹ , respectively. Body weight depression occurred in the parents of both generations. Decreased body weight was observed in F0 mid- and high-dose males, and F0 high-dose females, while in the F1 parents, it occurred in the high dose groups of each sex. The NOAEL was based on hyperkeratosis and squamous epithelial hyperplasia of the fore-stomach, and epithelia hyperplasia, tubular hypertrophy and clear cell hyperplasia of the kidney that occurred in both sexes at the top dose, but were more pronounced in males.
De Castro <i>et al.</i> (2000) Reproductive NOAEL = 200 mg kg ⁻¹ bw d ⁻¹ Developmental LOAEL = 200 mg kg ⁻¹ bw d ⁻¹	Rats (strain unspecified) received chlorothalonil orally (route of administration unspecified) during gestation days 1 to 6 at doses of 0 or 200 mg kg ⁻¹ bw d ⁻¹ . No effects were observed on body weight gain of dams and offspring. Weights of gravid uterus, foetus, placenta and ovary also remained unaffected. At this dose level, physical and maturational development of offspring according to age was interrupted. No further details were provided.
Embryo- and teratotoxicity in mammals	
Mizens <i>et al.</i> (1983) Cited in EHC (1996) Teratogenic NOAEL = 25 mg kg ⁻¹ bw d ⁻¹ (lowest dose employed)	Female Sprague-Dawley rats received chlorothalonil orally via gavage on days 6 to 15 of gestation at doses of 0, 25, 100 or 400 mg kg ⁻¹ bw d ⁻¹ and animals were killed on day 20. Unspecified clinical signs of maternal toxicity were evident at the highest dose level. The NOAEL was based on the absence of compound-related incidences of external, internal or skeletal malformations in the foetuses of treated animals and was the lowest dose employed.

Sirasu and Teramoto (1975) Cited in EHC (1996) Teratogenic NOAEL = 5 mg kg ⁻¹ bw d ⁻¹ (lowest dose employed)	Female rabbits (strain unspecified) received chlorothalonil during days 6 to 18 of pregnancy at doses of 0, 5 or 50 mg kg ⁻¹ bw d ⁻¹ and animals were killed on day 29. The NOAEL was based on the absence of compound-related incidences of external, internal or skeletal malformations in the foetuses of treated animals and was the lowest dose employed.
Sub-chronic toxicity to birds	
OPP (2000) in ECOTOX database Sub-chronic LC50 = >21500 mg kg ⁻¹ diet	Juvenile mallard ducks (<i>Anas platyrhnchos</i>) received chlorothalonil via their diet at unspecified doses for 8 days. No further details were provided.
OPP (2000) in ECOTOX database Sub-chronic LC50 = >10 000 mg kg ⁻¹ diet	Fourteen day old mallard ducks (<i>Anas platyrhnchos</i>) received chlorothalonil via their diet at unspecified doses for 8 days. No further details were provided.
OPP (2000) in ECOTOX database Sub-chronic LC50 = 2000 mg kg ⁻¹ diet	Eight day old mallard ducks (<i>Anas platyrhnchos</i>) received chlorothalonil via their diet at unspecified doses for 9 days. No further details were provided.
OPP (2000) in ECOTOX database Sub-chronic LD50 = 158 mg kg ⁻¹ bw	Eight day old mallard ducks (<i>Anas platyrhnchos</i>) received chlorothalonil via their diet at unspecified doses for 14 days. No further details were provided.
OPP (2000) in ECOTOX database Sub-chronic LD50 = >4640 mg kg ⁻¹ bw	Fourteen day old mallard ducks (<i>Anas platyrhnchos</i>) received chlorothalonil via their diet at unspecified doses for 14 days. No further details were provided.
OPP (2000) in ECOTOX database Sub-chronic LC50 = >10 000 mg kg ⁻¹ diet	Fourteen day old Northern bobwhite quail (<i>Colinus virginianus</i>) received chlorothalonil via their diet at unspecified doses for 8 days. No further details were provided.
OPP (2000) in ECOTOX database Sub-chronic LC50 = 1746 mg kg ⁻¹ diet	Juvenile Northern bobwhite quail (<i>Colinus virginianus</i>) received chlorothalonil via their diet at unspecified doses for 8 days. No further details were provided.
No data could be located for chronic, reproductive and developmental avian toxicity for chlorothalonil.	

3.5.2 **PNECs for secondary poisoning of predators**

Fish bioconcentration data (as BCF values) for chlorothalonil range from 9.4 to 264, hence the trigger of a BCF > 100 is met and derivation of PNECs for secondary poisoning of predators is required.

No data could be located for chronic effects on birds. The lowest relevant NOAEL is from a 2-year study with dogs. This NOAEL is conservative since it is based on the highest dose employed in the study where no adverse effects were observed (Holsing and Voelker 1970). This study is supported by the results of the carcinogenicity studies by Wilson et al. (1987, 1983, 1989).

The appropriate assessment factor to derive a PNEC based on a chronic $NOEC_{food}$ of a mammalian study is 30 (Table 23 of TGD).

$PNEC_{secpois.biota} = NOEC_{food}$ (120 mg kg⁻¹) / AF 30 = 4 mg kg⁻¹ prey (wet wt)

Information on biomagnification of chlorothalonil is not available, but due to the normally rapid metabolisation of the compound the occurrence of this effect is not anticipated. The corresponding safe concentration in water (preventing bioaccumulation in prey to levels > $PNEC_{secpois.biota}$) can therefore be calculated as follows:

PNEC_{secpois.water} = PNEC_{secpois.biota} (4 mg kg⁻¹) / BCF

If the highest reported BCF of 264 is used for the calculation, this would result in a corresponding water concentration of:

PNEC_{secpois.water} = 4 mg kg⁻¹ prey / BCF (264) = 15 µg chlorothalonil l⁻¹

This concentration is higher than the proposed long-term PNECs for the protection of freshwater and saltwater organisms. Therefore, if quality standards are set on the basis of these PNECs the protection of predators from secondary poisoning will be included, and derivation of additional EQS to protect against secondary poisoning is unnecessary.

4 Analysis and monitoring

The most common analytical method for measuring residues of chlorothalonil is gas chromatography (GC) with electron capture detection (ECD) (EHC 1996). GC with thermal conductivity detection (TCD) and flame ionization detection (FID) have also been used (Caux 1996).

Brief descriptions of analytical methods are given in Crane *et al.* (1995) with detection limits of 0.001 μ g l⁻¹ quoted for water samples. The summary of analytical methods given by WHO (EHC 1996) has a lowest detection limit of 0.05 μ g l⁻¹ for water samples.

Martinez *et al.* (2000) describe an analytical method for simultaneous determination of several antifouling pesticides, including chlorothalonil, in seawater samples using off-line solid-phase extraction followed by high performance liquid chromatography-atmospheric pressure chemical ionization mass spectrometry. The limit of detection is given as 0.001 μ g l⁻¹.

For water, the lowest proposed PNECs derived for chlorothalonil is 0.0035 μ g l⁻¹. The data quality requirements are that, at a third of the EQS, total error of measurement should not exceed 50 per cent. Using this criterion, it is evident that current analytical methodologies should offer adequate performance to analyse for chlorothalonil.

5 Conclusions

5.1 Availability of data

Long-term laboratory data are available for five different freshwater taxonomic groups including algae, crustaceans, fish, insects and macrophytes. Freshwater short-term toxicity data are available for 10 taxonomic groups (algae, amphibians, annelids, crustaceans, fish, insects, macrophytes, molluscs, platyhelminths and rotifers). Based on the information available, algae, crustaceans and fish appear to be equally sensitive to chlorothalonil at very low concentrations. Macrophytes appear to be at least one order of magnitude less sensitive. For saltwater organisms, single species short-term toxicity data are available for six different taxonomic groups (algae, ascidians, crustaceans, echinoderms, fish, and molluscs).

Short-term toxicity data for both freshwater and saltwater species are adequate to derive PNEC values, as are long-term data for freshwater species. However, insufficient long-term toxicity data are available to fulfil the minimum requirement of three saltwater taxa (algae, crustaceans and fish) as required under Annex V of the Water Framework Directive, hence the fresh and saltwater datasets were combined.

In addition, laboratory data are supplemented by freshwater mesocosm data, which suggest that under more natural conditions, toxicity is reduced due to dissipation of chlorothalonil, thus reducing the potential exposure of non-target organisms.

Chlorothalonil is not generally suspected of being an endocrine-disrupting chemical.

5.2 Derivation of PNECs

The proposed PNECS are described below and summarised in Table 5.1.

5.2.1 Long-term PNEC for freshwaters

The lowest reliable long-term toxicity value for freshwater organisms is a NOEC of 0.35 μ g l⁻¹ for rainbow trout, *Oncorhynchus mykiss*. Reliable long-term NOECs are available for algae, invertebrates and fish, and, therefore, an assessment factor of 10 has been applied, resulting in a PNEC_{freshwater_lt} of 0.035 μ g l⁻¹.

5.2.2 Short-term PNEC for freshwaters

Reliable short-term data are available for algal, invertebrate and fish species, which shows that acute sensitivity to chlorothalonil is comparable across taxa. The lowest reliable short-term result is the 5-day growth inhibition (using the biomass endpoint) EC50 of 8.8 μ g l⁻¹ for the diatom, *Navicula pelliculosa* with a corresponding growth inhibition EC50 (using the more relevant growth rate endpoint) of 14 μ g l⁻¹. Reliable 96-hour LC50 values of 12 μ g l⁻¹ for effects of chlorothalonil on the survival of the freshwater lobster *Astacopsis gouldi* and rainbow trout *Oncorhynchus mykiss* have also been reported. To derive the short-term freshwater PNEC is proposed that an assessment

factor of 10 (given the large body of acute data) was therefore applied to the 96-hour LC50 values of 12 μ g l⁻¹ for *A.gouldi* and *O.mykiss*, resulting in a PNEC_{freshwater_st} of 1.2 μ g l⁻¹.

5.2.3 Long-term PNEC for saltwaters

Long-term single species saltwater toxicity data are only available for algae and crustaceans. The most sensitive result is a 28-day NOEC of 0.83 μ g l⁻¹ for the mysid shrimp, *Americamysis bahia*, but this study is not considered reliable enough to be used as the basis of a PNEC. As the saltwater toxicity data values available do not appear to differ markedly from the range obtained for corresponding freshwater species, a combined freshwater and saltwater dataset for marine effects assessment was used to derive the long-term saltwater PNEC. Therefore, the freshwater PNEC is recommended to be adopted to protect saltwater taxa. It is also proposed that an additional assessment factor of 10 is applied to account for the paucity of long-term toxicity data for marine species. This results in a PNEC_{saltwater it} of 0.0035 μ g l⁻¹.

5.2.4 Short-term PNEC for saltwaters

Reliable short-term data are available for six different taxonomic groups (algae, ascidians, crustaceans, echinoderms, fish and molluscs) including the base set of algae, invertebrates and fish. The most sensitive short-term result for saltwater species is a 96-hour shell deposition EC50 of 3.6 μ g l⁻¹ for *Crassostrea virginica*. This is an unpublished study, but a further unpublished study using the same species reported 96-h EC50 values of 5.0 μ g l⁻¹ supporting this sensitive result. In addition, there is a 48-hour EC50 of 6.6 μ g l⁻¹ for developmental effects in the echinoderm *Parcentrotus lividus*. It is therefore recommended that a short-term saltwater PNEC should be based on effects to the mollusc *C. virginica* (3.6 μ g l⁻¹) and an assessment factor of 10. This results in a PNEC_{saltwater_st} = 0.36 μ g l⁻¹.

5.2.5 **PNEC** for sediments

The TGD trigger value of a log Koc or log Kow of \geq 3 is met, as reported log Kow and Koc values are in the range 2.91 – 3.05 and 2.9-3.84 respectively. However, there is only limited information with respect to experimental data on sediment toxicity for chlorothalonil and therefore no PNEC_{sediment} can be derived.

5.2.6 PNEC for secondary poisoning

Bioconcentration data (as BCF values) for chlorothalonil for fish range from 9.4 to 264, hence the trigger of a BCF >100 is exceeded and derivation of PNECs for secondary poisoning of predators is required. The lowest relevant NOEC_{food} is 120 mg kg⁻¹ derived from a 2-year study with dogs. Using the highest reported BCF of 264 for the calculation results in a corresponding water concentration of PNEC_{secpois.water} = 4 mg kg⁻¹ prey / BCF (264) = 15 μ g chlorothalonil l⁻¹.

This concentration is higher than the proposed long-term PNECs for the protection of freshwater and saltwater organisms. Therefore, if quality standards are set on the basis of these PNECs the protection of predators from secondary poisoning will be included, and derivation of additional EQS to protect against secondary poisoning is unnecessary.

Table 5.1 Summary of proposed PNECs

Receiving medium/exposure scenario	Proposed PNEC (μg l ⁻¹)	Existing EQS (μg l ⁻¹)
Freshwater/long-term	0.035	0.1
Freshwater/short-term	1.2	1.0
Saltwater/long-term	0.0035	0.1
Saltwater/short-term	0.36	1.0
Sediments	Insufficient data	-
Secondary poisoning	15	-

5.3 Analysis

For water, the lowest proposed PNECs derived for chlorothalonil is 0.0035 μ g l⁻¹. The data quality requirements are that, at a third of the EQS, total error of measurement should not exceed 50%. Using this criterion, it is evident that current analytical methodologies (non-standard) employing gas chromatography (GC) with electron capture detection or off-line solid-phase extraction followed by high performance liquid chromatography-atmospheric pressure chemical ionization mass spectrometry, are both capable of achieving detection limits of 0.001 μ g l⁻¹. This should offer adequate performance to analyse for chlorothalonil.

5.4 Implementation issues

Based on consideration of the information collated within the report and the proposed PNECs the following comments are made re: implementation:-

- Current analytical methods are sensitive enough to assess compliance with the proposed PNECs in receiving waters.
- The freshwater long term and short term PNECs are not subject to excessive uncertainty with assessment factors of 10 being applied to derive the PNECs. The long term saltwater value was derived using an assessment factor of 100. This could be potentially reduced if additional reliable data was available for marine taxa.

References & Bibliography

Andersen HR, Vinggaard AM, Rasmussen TH, Gjermandsen IM, and Bonefeld-Jorgensen EC (2002) Effects of currently used pesticides in assays for estrogenicity, and aromatase activity in vitro. *Toxicology and Applied Pharmacology*, **179**, 1-12.

Ashwell J, Dark R, Grant R, Jones R, Tattersfield L. 2002. Outdoor microcosm study to assess the effects of chlorothalonil on aquatic organisms. Syngenta Jealott's Hill International Research Centre Study number 00JH010

Baier-Anderson C, and Anderson RS (1998a) Characterization of the immunotoxicity of chlorothalonil to striped bass phagocytes following in vitro exposure. *Marine Environmental Research*, **46**, 337-340.

Baier-Anderson C, and Anderson RS (1998b) Evaluation of the immunotoxicity of chlorothalonil to striped bass phagocytes following in vitro exposure. *Environmental Toxicology and Chemistry*, **17**, 1546-1551.

Baier-Anderson C, and Anderson RS (2000) Suppression of superoxide production by chlorothalonil in striped bass (*Morone saxatilus*) macrophages: the role of cellular sulfhydryls and oxidative stress. *Aquatic Toxicology*, **50**, 85-96.

Bejarano AC, Chandler GT, and Decho AW (2005) Influence of natural dissolved organic matter (DOM) on acute and chronic toxicity of the pesticides chlorothalonil, chlorpyrifos and fipronil on the meiobenthic estuarine copepod *Amphiascus tenuiremis*. *Journal of Experimental Marine Biology and Ecology*, **321**, 43-57.

Bellas J (2006) Comparative toxicity and of alternative antifouling biocides on embryos larvae of marine invertebrates. *The Science of the Total Environment*, **367**, 573-585.

Caux PY, Kent RA, Fan GT and Stephenson GL (1996) Environmental fate and effects of chlorothalonil: A Canadian perspective. *Critical Reviews in Environmental Science and Technology*, **26**, 45-93.

Chemfinder (2005) *ChemFinder database.* Cambridge, MA: CambridgeSoft Corp. Available from: <u>http://chemfinder.cambridgesoft.com/</u> [Accessed 29 March 2007]

Crane M, Burchmore S, Vine S, and Young W (1995) *Proposed environmental quality standards for chlorothalonil in water.* R&D Technical Report No DoE 3634/1 Swindon:WRc plc.

Davies PE. 1987. Physiological, anatomic and behavioural changes in the respiratory system of *Salmo gairdneri* Rich. on acute and chronic exposure to chlorothalonil. *Comparative Biochemistry and Physiology* **88C**:113-119.

Davies PE (1988) Disappearance rate of chlorothalonil (TCLN) in the aquatic environment. *Bulletin of Environmental Contamination and Toxicology*, **40**, 405-409.

Davies PE, Cook LSJ, and Goenarso D (1994) Sublethal Responses to Pesticides of Several Species of Australian Fresh-Water Fish and Crustaceans and Rainbow-Trout. *Environmental Toxicology and Chemistry*, **13**, 1341-1354.

Davies PE, and White RWG (1985) The toxicology and metabolism of chlorothalonil in fish. 1. Lethal levels in *Salmo gairdneri, Galaxius maculates, G. trurraceus* and *G. auratus* and the fate of 14C-TCLN in *S. gairdneri. Aquatic Toxicology,* **7**, 93-105.

De Castro, V.L., Chiorato, S.H. and Pinto, N.F. (2000). Biological monitoring of embryo-foetal exposure to methamidophos or chlorothalonil on rat development. *Veterinary and Human Toxicol*ogy, **42**, 361-365.

DeLorenzo ME, and Serrano L (2003) Individual and mixture toxicity of three pesticides; Atrazine, chlorpyrifos, and chlorothalonil to the marine phytoplankton species *Dunaliella tertiolecta*. *Journal of Environmental Science and Health Part B-Pesticides Food Contaminants and Agricultural Wastes*, **38**, 529-538.

EHC (1996). Environmental Health Criteria 183 – Chlorothalonil. Available at <u>http://www.inchem.org/documents/ehc/ehc/ehc183.htm</u> [Accessed May 07].

Ernst W, Doe K, Jonah P, Young J, Julien G, and Hennigar P (1991) The Toxicity of Chlorothalonil to Aquatic Fauna and the Impact of Its Operational Use on a Pond Ecosystem. *Archives of Environmental Contamination and Toxicology*, **21**, 1-9.

ESR Reports (2000). Chlorothalonil. ECBI/53/00 – Add.2 Available from http:// www.ecb.jrc.it [Accessed May 07]

European Chemicals Bureau (ECB) (2003) Technical Guidance Document in Support of Commission Directive 93/67/EEC on risk assessment for new and notified substances: Commission Directive (EC) No. 1488/94 on Risk Assessment for Existing Substances and Directive 98/8/EC of the European Parliament and of the Council Concerning the Placing of Biocidal Products on the Market. Parts I–IV. Luxembourg: Office for Official Publications of the European Communities. Available from: http://ecb.jrc.it/tgdoc [Accessed 21 November 2006].

European Chemicals Bureau (ECB) (2005) European Substances Information System (ESIS). Available from: <u>http://ecb.jrc.it/esis/</u> [Accessed 29 March 2007]

EU DAR (2006) Draft Assessment Report for the active substance chlorothalonil. Finalised in the Standing Committee on Plant Health at its meeting on 15 February 2005 in view of the inclusion of chlorothalonil in Annex I of Directive 91/414/EEC. SANCO4343/2000 final (revised) 28 September 2006. Brussels: European Commission Directorate-General Health & Consumer Protection. Available from:

<u>http://europa.eu.int/comm/food/plant/protection/evaluation/exist_subs_rep_en.htm</u> [Accessed 29 March 2007].

Farag, A.T., Karkour, T.A. and El Okazy, A. (2006). Embryotoxicity of oral administered chlorothalonil in mice.. *Birth Defects Research. B. Developmental and. Reproductive. Toxicology*, **77**, 104-109.

Fernandez-Alba AR, Hernando MD, Piedra L, Chisti Y (2002) Toxicity evaluation of single and mixed antifouling biocides measured with acute toxicity bioassays. *Analytica Chimica Acta*, **456**, 303-312.

Food and Agriculture Organization of The United Nations (FAO) (2005) *Specifications and Evaluations for Chlorothalonil*. Available from: <u>http://www.fao.org/ag/agp/pesticid/</u> [accessed 30 April 2007].

Gallagher EP, Canada AT, Digiulio RT (1992) The Protective Role of Glutathione in Chlorothalonil-Induced Toxicity to Channel Catfish. *Aquatic Toxicology*, **23**, 155-168. Hamer M (2003) Information in support of chlorothalonil use in the Western United States relative to Endangered Salmonid Species. (revised) White paper November 13, 2003. available at http://www.epa.gov/espp/effects/chloroth-final.pdf [Accessed 2 April 2007].

Hazardous Substances Data Bank (HSDB) (2006) *Toxicology Data Network (TOXNET®): Hazardous Substances Data Bank (HSDB®)* [online]. Bethesda, MD: Division of Specialized Information Services (SIS) of the US National Library of Medicine (NLM). Available from: <u>http://toxnet.nlm.nih.gov/</u> [Accessed 28 March 2007].

Holsing, G.C. and Voelker, R.W. (1970). 104-week dietary administration – dogs, Daconil 2787 (technical). Unpublished report by Hazleton Laboratories Inc. Submitted to WHO by Biotech Corporation, Mentor, Ohio, USA. Cited in JMPR (1992).

HSE (2002) (The Health and Safety Executive Biocides & Pesticides Assessment Unit) . *Evaluation on: Chlorothalonil: Use as a booster biocide in antifouling products.* Report No 204 August 2002. Defra.

Institute for Environment and Health (IEH) (2005) *Chemicals purported to be endocrine disruptors. A compilation of published lists.* (Web Report W20). Leicester: IEH. Available from: <u>http://www.silsoe.cranfield.ac.uk/ieh/publications/endocrine.html</u> [Accessed 11 March 2007].

International Uniform Chemical Information Database (IUCLID) (2000) *IUCLID dataset for chlorothalonil*. Ispra, Italy: European Chemicals Bureau, European Commission.

JMPR (1992). Chlorothalonil – Pesticide residues in food, 1992 Evaluation Part II Toxicology. Available from: <u>http://www.inchem.org/documents/jmpr/jmpmono/v92pr05.htm</u> [Accessed May 07].

Key PB, Meyer SL, and Chung KW (2003) Lethal and sub-lethal effects of the fungicide chlorothalonil on three life stages of the grass shrimp, *Paldemonetes pugio. Journal of Environmental Science and Health Part B-Pesticides Food Contaminants and Agricultural Wastes*, **38**, 539-549.

Lucas, F. and Benz, G. (1990). A two generation reproduction study in rats with technical chlorothalonil. Unpublished report Chlorothalonil: No. 1722-87-0121-TX-003 from Ricerca, Inc., Painesville, Ohio, USA. Submitted to WHO by Biotech Corporation, Mentor, Ohio, USA. Cited in JMPR (1992).

Ma JY, Zheng RQ, Xu LG, and Wang SF (2002) Differential sensitivity of two green algae, *Scenedesmus obliqnus* and *Chlorella pyrenoidosa*, to 12 pesticides. *Ecotoxicology and Environmental Safety*, **52**, 57-61.

Martínez K, Ferrer I, and Barceló (2000) Part-per-trillion level determination of antifouling pesticides and their byproducts in seawater samples by off-line solid-phase extraction followed by high-performance liquid chromatography-atmospheric pressure chemical ionization mass spectrometry. *Journal of Chromatography A*, **879**, 27-37.

Meylan W M and Howard P H (1993) Computer estimation of the atmospheric gas-phase reaction rate of organic compounds with hydroxyl radicals and ozone. *Chemosphere*, **26**, 2293-2299.

Mizens, M., Wilson, N.H., Laveglia, J., Killeen, J.C. and Ignatoski, J.A. (1983). A teratology study in rats with technical chlorothalonil. Mentor, Ohio, Fermenta ASC (Unpublished report No. 517-5TX-82-0011-003). Cited in EHC (1996).

NTP (1978). National Toxicology Program - Bioassay of chlorothalonil for possible carcinogenicity. *National Cancer Institute Carcinogenocity Technical Report Series*, **41**: 1-94.

OPP (2000). Pesticide Ecotoxicity Database (Formerly: Environmental Effects Database (EEDB)) Environmental Fate and Effects Division, U.S. EPA, Washington, D.C. Office of Pesticide Programs (OPP).

OPP Pesticide Ecotoxicity Database (OPP) (2007) available at <u>http://www.ipmcenters.org/Ecotox/index.cfm</u> [Accessed 29 March 2007].

Paynter, O.E. and Busey, W.M. (1966). Two year dietary administration – dogs DAC 2787. Unpublished report by Hazleton Laboratories Inc., Submitted to WHO by Biotech Corporation, Mentor, Ohio, USA. Cited in JMPR (1992).

RIVM (National Institute of Public Health and the Environment) (2001) *Maximum permissible concentrations and negligible concentrations for antifouling substances: Irgarol 1051, dichlofluanid, ziram, chlorothalonil and TCMTB.* RIVM report 601501 008, May 2001. Bilthoven, The Netherlands.

Sherrard, R. M., Murray-Gulde, C. L., Rodgers, J. H., and Shah, Y. T. (2003). Comparative toxicity of chlorothalonil: *Ceriodaphnia dubia* and *Pimephales promelas*. *Ecotoxicology and Environmental Safety*, **56**, 327-333.

Shirasu, Y. and Teramoto, S. (1975). Teratogenicity study of Daconil in rabbits. Mentor, Ohio, Fermenta ASC (Unpublished report No. 000-5TX-75-2077-001). Cited in EHC (1996)

Schults, S.K. and Hoberg, J.R. (1991) Flow-through life-cycle toxicity study in mysid shrimp with technical chlorothalonil. Ricerca Inc and Springborn Laboratories Inc (unpublished report No. 3228-89-0043-TX-002/90-05-3330) cited in EU DAR (2006)

Schults, S.K., Kileen, J.C., Dionne, E. and Cary G.A. (1980) A chronic toxicity study in the fathead minnow (*Pimephales promelas*) with technical chlorothalonil. Diamond Shamrock Corp. and EG & G, Bionomics (Unpublished report No. 090-5TX-79-0049-003) cited in EU DAR (2006).

Schults, S.K., Kileen, J.C., Ward, G.S. and Dillon, K.A. (1983) Flow-through, acute oyster shell deposition study with technical chlorothalonil. Diamond Shamrock Corp. and EG & G, Bionomics (Unpublished report No. 537-5TX-82-0133-003) cited in EU DAR (2006).

Shults, S.K., Laveglia, J., Killeen, J.C. and Ignatoski, J.A. (1983). A 90-day feeding study in mice with technical chlorothalonil. Mentor, Ohio, SDS Biotech Corporation (Unpublished report No. 618-5TX-83-0007-004) Cited in EHC (1996).

Teather K, Jardine C, and Gormley K (2005) Behavioral and sex ratio modification of Japanese medaka (*Oryzias latipes*) in response to environmentally relevant mixtures of three pesticides. Environmental Toxicology, **20**, 110-117.

US Environmental Protection Agency (USEPA) (1999) Reregistration Eligibility Decision (RED) chlorothalonil. EPA 738-R-99-004. Washington, DC: Office of Prevention, Pesticides and Toxic Substances, US EPA. Available from: <u>http://www.epa.gov/oppsrrd1/REDs/0097red.pdf</u> [Accessed 30 March 2007].

USEPA (2004) Chlorothalonil: Notice of filing a pesticide petition to establish a tolerance for a certain pesticide chemical in or on food. Available from <u>http://www.epa.gov/fedrgstr/EPA-PEST/2004/August/Day-20/p19032.htm</u> [Accessed 8 May 2007].

Wilson, N.H., Lavenglia, J., Killeen, J.C. and Ignatoski, J.A. (1983). A sub-chronic toxicity study of technical chlorothalonil in rats. Mentor, Ohio, Fermenta ASC (Unpublished report No. 562-5TX-81-0213-004). Cited in EHC (1996).

Wilson, N.H., Killeen, J.C. and Ignatoski, J.A. (1985). Histopathological re-evaluation of renal tissue from a sub-chronic toxicity study of technical chlorothalonil in rats. Mentor, Ohio, Fermenta ASC (Unpublished report No. 753-5TX-85-0056-002). Cited in ESR (2000).

Wilson, N.H., Killeen, J.C. and Baxter, R.A. (1987). A tumorigenicity study of technical chlorothalonil in male mice – final report. Mentor, Ohio, Fermenta ASC (Unpublished report No. 1099-84-0077-TX-006). Cited in EHC (1996).

Wilson, N.H., Killeen, J.C. and Baxter, R.A. (1989). A tumorigenicity study of technical chlorothalonil in rats. Mentor, Ohio, Fermenta ASC (Unpublished report No. 1102-84-0103-TX-007). Cited in ESR (2000).

List of abbreviations

AA	Annual average
AF	Assessment factor
a.i.	Active ingredient
BCF	Bioconcentration factor
bw	Body weight
CAS	Chemical Abstracts Service
d	Day
DO	Dissolved oxygen
EC50	Concentration effective against 50 per cent of the organisms or animals tested
ECD	Electron Capture Detection
EHC	Environmental Health Criteria
EQS	Environmental Quality Standard
FID	Flame Ionization Detection
FIFRA	Federal Insecticide, Fungicide and Rodenticide Act [US]
GC	Gas chromatography
GLP	Good Laboratory Practice (OECD)
h	Hour
LC50	Concentration lethal to 50 per cent of the organisms or animals tested
LD50	Dose lethal to 50 per cent of the organisms or animals tested
LOEL	Lowest observed effect level
LOAEL	Lowest observed adverse effect level
LOEC	Lowest observed effect concentration
Lt	Long-term
MAC	Maximum allowable concentration
NOEL	No observed effect level
NOAEL	No observed adverse effect level
NOEC	No observed effect concentration
OECD	Organization for Economic Co-operation and Development
PNEC	Organization for Economic Co-operation and Development Predicted no-effect concentration
PNEC	Predicted no-effect concentration

TCG	Thermal conductivity detection
TGD	Technical Guidance Document
UKTAG	UK Technical Advisory Group
US EPA	US Environmental Protection Agency
WFD	Water Framework Directive

ANNEX I Data quality assessment sheets

Identified and ordered by alphabetical order of references.

Data relevant for PNEC derivation were quality assessed in accordance with the so-called Klimisch Criteria (Table A1).

Code	Category	Description
1	Reliable without restrictions	Refers to studies/data carried out or generated according to internationally accepted testing-guidelines (preferably GLP**) or in which the test parameters documented are based on a specific (national) testing guideline (preferably GLP), or in which all parameters described are closely related/comparable to a guideline method.
2	Reliable with restrictions	Studies or data (mostly not performed according to GLP) in which the test parameters documented do not comply totally with the specific testing guideline, but are sufficient to accept the data or in which investigations are described that cannot be subsumed under a testing guideline, but which are nevertheless well- documented and scientifically acceptable.
3	Not reliable	Studies/data in which there are interferences between the measuring system and the test substance, or in which organisms/test systems were used that are not relevant in relation to exposure, or which were carried out or generated according to a method which is not acceptable, the documentation of which is not sufficient for an assessment and which is not convincing for an expert assessment.
4	Not assignable	Studies or data which do not give sufficient experimental details and which are only listed in short abstracts or secondary literature.

Table A1 Klimisch Criteria*

* Klimisch H.-J, Andreae M and Tillmann U, 1997 A systematic approach for evaluating the quality of experimental toxicological and ecotoxicological data. Regulatory Toxicology and Pharmacology, 25, 1-5. ** OECD Principles of Good Laboratory Practice (GLP). See: http://www.oecd.org/department/0,2688,en 2649 34381 1 1 1 1 1,00.html

Bejarano et al. 2005

Information on the test species	
Test species used	Amphiascus tenuiremis
Source of the test organisms	Laboratory culture
Holding conditions prior to test	Contaminant free muddy, flow-through microcosms, salinity 30 ‰; pH 8; temp 23 ± 2°C
Life stage of the test species used	Adults + stage 1 juveniles (life cycle test)

Information on the test design	
Methodology used	ASTM guidelines (E1192-88) 1988 adult test
	ASTM E2317-04 2004 juvenile test (life cycle)
Form of the test substance	98% purity dissolved in acetone
Source of the test substance	Chem Service, West Chester, PA, USA
Type and source of the exposure medium	Filtered seawater or filtered seawater
	containing salt-marsh DOM (TOC 11.6 mg l ⁻¹)
Test concentrations used	5 + carrier control (adult) (1 life-cycle)
Number of replicates per concentration	4
Number of organisms per replicate	20 males and 20 non-gravid females (adult)
	16 (life cycle)
Nature of test system (Static, Semi-static or,	96 h static
Flow- through, duration, feeding)	16 d life cycle test, semi-static renewal every
	72 h, fed every 6 d
Measurement of exposure concentrations	Yes – ranged from 22% below to 10% above
	nominals. Pesticide loss over 96 h \leq 15%
Measurement of water quality parameters	Yes: means - salinity 30.14‰; pH 8.16; DO
	85.64%; temp = 20°C
Test validity criteria satisfied	Yes
Water quality criteria satisfied	Yes
Study conducted to GLP	Not stated
Comments	Significant increase in toxicity in absence of
	DOM
	Males more sensitive than females (96 h LC
	50s - M=27 and F=53 μ g l ⁻¹ and with DOM
	M=59 and F=90 μg Ι ⁻¹
	16 d life-cycle test carried out at 24 μ g l ⁻¹ (no
	DOM) reduced reproductive success of
	exposed pairs by 26%

Reliability of study	Reliable
Relevance of study	Relevant
Klimisch Code	1

Reference	Bellas 2006

Information on the test species	
Test species used	(1) Mytilus edulis
	(2) Paracentrotus lividus
	(3) Ciona intestinalis
Source of the test organisms	(1) and (3) field collected from gullmarsfjord
	area (SW Sweden)
	(2) Ría de Vigo (Galicia, NW Spain)
Holding conditions prior to test	Maintained in aquaria with running seawater
	for at least 4 d prior to testing. Gametes from
	(2) and (3) obtained by dissection, (1) induced
	to spawn
Life stage of the test species used	Fertilized eggs

Information on the test design	
Methodology used	Non standard but well described
Form of the test substance	Analytical grade, dissolved in DMSO
Source of the test substance	Riedel-de Haën, Sigma Aldrich
Type and source of the exposure medium	0 22 µm filtered sea water
Test concentrations used	Not stated, range chosen based on literature toxicity and solubility
Number of replicates per concentration	5
Number of organisms per replicate	(1) 15 -20 eggs ml ⁻¹
	(2) ~ 20 eggs ml ⁻¹
	(3) ~ 10 eggs ml ⁻¹
Nature of test system (static, semi-static or	static
flow-through, duration, feeding)	
Measurement of exposure concentrations	No
Measurement of water quality parameters	Not stated
Test validity criteria satisfied	Not stated
Water quality criteria satisfied	Not stated
Study conducted to GLP	Not stated
Comment	(1) EC10 = 4.5 μ g l ⁻¹
	(2) EC10 = 4.3 μ g l ⁻¹ ; EC10 _{growth} = 0.5 μ g l ⁻¹
	(3) EC10 = 12 μg l ⁻¹

Reliability of study	Reliable with restrictions
Relevance of study	Relevant
Klimisch Code	2

Davies and White 1985

Information on the test species	
Test species used	 (1) Oncorhynchus mykiss (S. gairdneri) (2) Galaxias maculates (3) Galaxias truttaceus (4) Galaxias auratus
Source of the test organisms	 (1) Sevrup fisheries, Bridport, Tasmania (2) and (3) field collected from small coastal streams in SE Tasmania (4) field collected from Lake Crescent, central Tasmania
Holding conditions prior to test	Acclimated in 40 I flow-through aquaria for minimum 7 – 10 d prior to tests. Feeding stopped 24 h prior to testing
Life stage of the test species used	

Information on the test design	
Methodology used	Brief methodology given
Form of the test substance	Purified from 'Bravo' formulation by xylene
	extraction, purity \geq 99% by GC
Source of the test substance	Not stated
Type and source of the exposure medium	Kingborough tap-water, filtered through
	activated charcoal
Test concentrations used	Not stated
Number of replicates per concentration	Not stated
Number of organisms per replicate	15
Nature of test system (Static, Semi-static or,	Flow-through
Flow- through, duration, feeding)	
Measurement of exposure concentrations	Yes
Measurement of water quality parameters	Yes Temp 13 - 16°C depending on species;
	DO 8-9 mg l ⁻¹ ; and 5.12 mg l ⁻¹ for low DO test
	(fish acclimated)
Test validity criteria satisfied	Not stated
Water quality criteria satisfied	yes
Study conducted to GLP	Not stated
Comments	<i>Ο. myki</i> ss 96 h LC50 17.1 μg l ⁻¹ and 10.5 μg l ⁻
	¹ (low DO)
	<i>G. maculate</i> s 96 h LC50 16.3 μg Γ ¹
	<i>G. truttaceu</i> s 96 h LC50 18.9 μg l ⁻¹
	<i>G. auratu</i> s 96 h LC50 29.2 μg l ⁻¹

Reliability of study	Reliable with restrictions
Relevance of study	Relevant
Klimisch Code	2 (study at low DO – 3)

Davies et al. 1994

Information on the test species	
Test species used	 (1) Oncorhynchus mykiss (2) Galaxias maculates (3) Paratya australiensis (4) Astacopsis gouldi
Source of the test organisms	 (1)commercial trout hatchery (2)electrofishing Mersey & Don Rivers, Tasmania (3) field collected Lake Crescent, Tasmania (4) Lab culture
Holding conditions prior to test	All animals were acclimated for 5 – 10 d, in a flow-through tank system before exposure.
Life stage of the test species used	 (1) juveniles: 1.1 – 2.5 g; 45-60 mm or 10 – 30 g; 100-150 mm (2) adults: 2.5 – 11 g; 80 – 135 mm (3) 0.05 – 0.15 g (4) juveniles (~ 0.1 g)

Information on the test design	
Methodology used	Non standard but well described
Form of the test substance	≥ 98% purity
Source of the test substance	Not stated
Type and source of the exposure medium	Natural water from Ouse River, Tasmania (pH 6.5 -7)
Test concentrations used	(1) and (2) 5 + control range $0.3 - 8.2 \ \mu g \ l^{-1}$ (3) and (4) 5 + control range $0.12 - 42.1 \ \mu g \ l^{-1}$
Number of replicates per concentration	2
Number of organisms per replicate	(1) and (2) = 10
	(3) and (4) = 25
Nature of test system (Static, Semi-static or,	Flow-through, organisms fed
Flow- through, duration, feeding)	
Measurement of exposure concentrations	yes
Measurement of water quality parameters	yes
Test validity criteria satisfied	yes
Water quality criteria satisfied	yes: DO > 95%; pH 6.5-7; 12°C or 12-15°C
Study conducted to GLP	Not stated
Comments	LC50 for fish species >than highest test concentration. 7 d LC50 <i>A. gouldi</i> 3.6 μ g l ⁻¹ and <i>P. australiensis</i> 10.9 μ g l ⁻¹

Reliability of study	Reliable
Relevance of study	Relevant
Klimisch Code	1

Reference DeLorenzo and Serrano 2003

Information on the test species	
Test species used	Dunaliella tertiolecta
Source of the test organisms	University of Texas Culture Collection
Holding conditions prior to test	F/2 marine media; 25°C
Life stage of the test species used	Log phase growth

Information on the test design	
Methodology used	ASTM 1996 (Vol 11.05 pp 575-586)
Form of the test substance	Analytical grade dissolved in acetone
Source of the test substance	Chemservice, Westchester, PA, USA
Type and source of the exposure medium	As culture medium
Test concentrations used	3.7, 11.1,33.3,100,300 μg l ⁻¹ + control
Number of replicates per concentration	3
Number of organisms per replicate	Initial 50,000 cells ml ⁻¹
Nature of test system (Static, Semi-static or,	Static
Flow- through, duration, feeding)	
Measurement of exposure concentrations	No
Measurement of water quality parameters	N/A
Test validity criteria satisfied	Yes
Water quality criteria satisfied	N/A
Study conducted to GLP	Not stated
Comments	-

Reliability of study	Reliable with restrictions
Relevance of study	Relevant
Klimisch Code	2

Reference Fernández-Alba et al. 2002		
	Reference	Fernández-Alba <i>et al</i> . 2002

Information on the test species	
Test species used	(1) Pseudokirchneriella subcapitata
	(2) Daphnia magna
Source of the test organisms	(1) provided with test kit immobilized in algal
	beads
	(2) dormant eggs supplied with test kit
Holding conditions prior to test	Not stated
Life stage of the test species used	(1)
	(2) < 24 h

Information on the test design	
Methodology used	(1) OECD Guideline 201 using Algaltoxkit
	(Creasel, Belgium)
	(2) OECD Guideline 202 / ISO 6341 protocol
	using Daphtoxkit (Creasel, Belgium)
Form of the test substance	Technical grade chlorothalonil (purity not
	stated)
Source of the test substance	Various substances tested and several
	sources cited therefore not able to identify
	individually
Type and source of the exposure medium	(1) culture medium provided with test kit
Test concentrations used	Not stated
Number of replicates per concentration	(1) 5
	(2) 6
Number of organisms per replicate	(1) 10^6 cells ml ⁻¹
	(2) not stated but 5 is norm with this test.
Nature of test system (static, semi-static or	Static
flow-through, duration, feeding)	No
Measurement of exposure concentrations	NO
Measurement of water quality parameters	(1) Temp 25°C
Measurement of water quality parameters	(2) Temp 20 \pm 1°C;
Test validity criteria satisfied	Not stated
Water quality criteria satisfied	N/A
Study conducted to GLP	Not stated
Comments	The inoculum level was 2 orders of magnitude
	higher than that recommended in the guideline
	nighter than that recommended in the guideline

Reliability of study	Reliable with restrictions
Relevance of study	Relevant
Klimisch Code	3

Reference Key et al. 2003

Information on the test species	
Test species used	Palaemonetes pugio
Source of the test organisms	Field collected from Leadenwah Creek, North
	Edisto River Estuary, SC
Holding conditions prior to test	Acclimated in 76 I tanks; 25°C; salinity 20‰
Life stage of the test species used	Adults, larvae and stage 5 embryos

Information on the test design	
Methodology used	Methodology well described 96h acute assay. Pulsed exposure life cycle assay conducted from newly hatched larvae to juvenile stage. Pulse exposures were 6h/day every 5 d for 20 d administered in 10‰ salinity seawater. At end of 6h exposure animals placed in clean 20‰ seawater, refreshed every 24h.
Form of the test substance	98% purity dissolved in acetone
Source of the test substance	Chemservice (West Chester, PA, USA)
Type and source of the exposure medium	seawater
Test concentrations used	0, 31.3, 62.5, 125, 250, 500 μg l ⁻¹ (adults, larvae and life-cycle tests) 0, 62.5, 125, 250, 500, 1000 μg l ⁻¹ embryos
Number of replicates per concentration	3
Number of organisms per replicate	10 (adults and larvae) For embryo test one per well in 24-well plate
Nature of test system (Static, Semi-static or, Flow- through, duration, feeding)	Static renewal every 24 h – adults fed
Measurement of exposure concentrations	No
Measurement of water quality parameters	Yes: mean temp 25.6°C, pH 8; salinity 20.7‰; DO 6.2 mg l ⁻¹ (adults): temp 25.3°C, pH 8.1; salinity 20.1‰; DO 6.1 mg l ⁻¹ (larvae): temp 27°C and 24h darkness (embryo)
Test validity criteria satisfied	Yes
Water quality criteria satisfied	Yes
Study conducted to GLP	Not stated
Comments	Adult 96 h LC50 = 152.9 μg l ⁻¹ Larval 96 h LC50 = 49.5 μg l ⁻¹ Embryo 96 h LC50 = 396 μg l ⁻¹

Reliability of study	Reliable with restrictions
Relevance of study	Relevant
Klimisch Code	2

 Reference
 Ma et al. 2002

Information on the test species	
Test species used	(1) Scenedesmus obliqnus
	(2) Chlorella pyrenoidosa
Source of the test organisms	Institute of Wuhan Hydrobiology, Chinese Academic of Science
Holding conditions prior to test	Cells propagated photoautotrophically in liquid HB-4 medium at 25°C under continuous illumination
Life stage of the test species used	Not stated

Information on the test design	
Methodology used	Standard algal test methodology described
Form of the test substance	30% suspension concentrate formulation
Source of the test substance	People's Republic of China
Type and source of the exposure medium	HB-4 medium
Test concentrations used	Range between 0 and 150 mg l-1 + control (several chemicals tested therefore range applicable not clear)
Number of replicates per concentration	3
Number of organisms per replicate	6×10^5 cells ml ⁻¹
Nature of test system (static, semi-static or flow-through, duration, feeding)	Static
Measurement of exposure concentrations	No
Measurement of water quality parameters	Algal medium
Test validity criteria satisfied	Yes
Water quality criteria satisfied	-
Study conducted to GLP	Not stated
Comment	EC50 S.obliqnus 8,069 µg l ⁻¹

Reliability of study	Reliable with restrictions
Relevance of study	Relevant
Klimisch Code	2

Reference	Sherrard et al. 2003

Information on the test species		
Test species used	Pimephales promelas	
Source of the test organisms	Culture from Dept of Environmental	
	Toxicology, Clemson University	
Holding conditions prior to test		
Life stage of the test species used	< 24 h	

Information on the test design	
Methodology used	5 range-finding 96 h static non-renewal exposures, followed by a modified static renewal 7 d exposure
Form of the test substance	Dragon Daconil 2787 (12.9% chlorothalonil)
Source of the test substance	Local vendor
Type and source of the exposure medium	Moderately hard well water
Test concentrations used	0, 5, 10, 12.5, 15, 17.5, 20. 22.5, 25 and 30 $\mu g l^{-1}$
Number of replicates per concentration	3
Number of organisms per replicate	10
Nature of test system (static, semi-static or	Semi-static daily preparation of renewal
flow-through, duration, feeding)	solutions from stock solutions prepared at
	test initiation, anticipating that concentration would decrease over time as in the field. Fed daily
Measurement of exposure concentrations	Yes, samples from high, median and low concentrations. Measured concentrations at start of experiment were all below target levels. Levels decreased 13 – 19% over 7d test period.
Measurement of water quality parameters	Yes: pH7.8; temp 25 \pm 1°C; hardness 80 mg CaCO ₃ l ⁻¹
Test validity criteria satisfied	Yes
Water quality criteria satisfied	Yes
Study conducted to GLP	Not stated
Comments	Reported results based on initial targeted concentrations.

Reliability of study	Reliable with restrictions
Relevance of study	Relevant
Klimisch Code	2

Reference	Schults and Hoberg 1991
Itelefence	

Information on the test species	
Test species used	Mysidopsis bahia (Americamysis bahia)
Source of the test organisms	-
Holding conditions prior to test	-
Life stage of the test species used	< 24 h

Information on the test design	
Methodology used	Test according to EPA Guideline
Form of the test substance	98% technical chlorothalonil
Source of the test substance	-
Type and source of the exposure medium	-
Test concentrations used	5 (0.63 - 10 μ g l ⁻¹) + solvent control (acetone, max 23 μ l l ⁻¹) and control. Mean measured concs: 0.065, 0.83, 1.2, 3.0, and 5.7 μ g l ⁻¹
Number of replicates per concentration	2
Number of organisms per replicate	30
Nature of test system (static, semi-static or	Flow-through
flow-through, duration, feeding)	Daily feeding
Measurement of exposure concentrations	Yes, measured by GC with electron capture detection (recovery 109%). Actual concentrations were 34 – 103% of nominal during test.
Measurement of water quality parameters	Yes: pH7.7 - 8; temp 23 -26°C; salinity 31- 33‰
Test validity criteria satisfied	No
Water quality criteria satisfied	Yes
Study conducted to GLP	Not stated
Comments	High mortality in control and solvent controls

Reliability of study	Unreliable
Relevance of study	Relevant
Klimisch Code	3

Schults et al. 1980

Information on the test species	
Test species used	Pimephales promelas
Source of the test organisms	-
Holding conditions prior to test	-
Life stage of the test species used	-

Information on the test design	
Methodology used	An early life-stage test extended over 2 generations. Exposure 4 d hatching period, 280 d F_0 generation and 34 d F_1 generation. Test according to EPA guidelines
Form of the test substance	96% technical chlorothalonil
Source of the test substance	-
Type and source of the exposure medium	-
Test concentrations used	1.5, 3.1, 6.2, 12.5 and 25 μ g l ⁻¹ + solvent control (acetone, max 5 μ l l ⁻¹) and control. Mean measured concs: 0.6, 1.4, 3.0, 6.5 and 16 μ g l ⁻¹
Number of replicates per concentration	-
Number of organisms per replicate	-
Nature of test system (static, semi-static or flow-through, duration, feeding)	Flow-through, no aeration
Measurement of exposure concentrations	Yes, actual concentrations measured weekly (recovery 84%) by GC with 63 Ni-electron capture detection. Actual concentrations were $40 - 64\%$ of nominal during test.
Measurement of water quality parameters	Yes: pH6.5 – 7.3; temp 25°C; hardness 30 mg I^{-1} as CaCO ₃
Test validity criteria satisfied	Yes
Water quality criteria satisfied	Yes
Study conducted to GLP	Not stated
Comments	

Reliability of study	Reliable
Relevance of study	Relevant
Klimisch Code	1

1	Reference	Schults et al. 1983

Information on the test species	
Test species used	Crassostrea virginica
Source of the test organisms	-
Holding conditions prior to test	-
Life stage of the test species used	Mean weight 2.6 g; mean height 5.3 cm

Information on the test design	
Methodology used	Test according to EPA Guidelines
Form of the test substance	96% technical chlorothalonil
Source of the test substance	-
Type and source of the exposure medium	-
Test concentrations used	1, 2, 4, 8, 16 and 32 μ g l ⁻¹ + solvent control (acetone, max 100 μ l l ⁻¹) and control. Mean measured concs: 0.6, 1.6, 3.2, 7.4, 15.2 and 30.8 μ g l ⁻¹
Number of replicates per concentration	Not stated
Number of organisms per replicate	10 (per concentration)
Nature of test system (static, semi-static or flow-through, duration, feeding)	Flow-through
Measurement of exposure concentrations	Yes, actual concentrations measured daily (recovery 80%) by GC with electron capture detection. Actual concentrations were $80 - 96\%$ of nominal during test, except in 1 ug l ⁻¹ (60%).
Measurement of water quality parameters	Yes: pH8 – 8.2; temp 14-16°C; salinity 22‰
Test validity criteria satisfied	Yes
Water quality criteria satisfied	Yes
Study conducted to GLP	Not stated
Comments	EPA Guideline 1985 requires at least 20 oysters per conc. Nominal EC50 = 7.3 ug Γ^1 (95% cf 5 – 12 ug Γ^1) calculated with moving average angle method; slope 2.55. NOEC 2 ug Γ^1 (Student t-test). EC50 using mean measured concs, with log-logistic regression = 0.5 ug Γ^1 (no reliable conf. interval)

Reliability of study	Reliable
Relevance of study	Relevant
Klimisch Code	2

 Reference
 Teather et al. 2005

Information on the test species	
Test species used	Oryzias latipes
Source of the test organisms	University of Prince Edward Island breeding stock
Holding conditions prior to test	15 individuals per 10 gallon tank in dechlorinated tap water at 20°C
Life stage of the test species used	Fertilized eggs

Information on the test design	
Methodology used	Non standard well described. Fry were removed to clean water 7 days post hatch. Activity levels were monitored 3 w post hatching following removal to clean water. Fish sexed at 5 m.
Form of the test substance	Commercial formulation
Source of the test substance	Obtained through Environment Canada (Moncton)
Type and source of the exposure medium	Autoclaved distilled embryo-rearing solution
Test concentrations used	0.06 µg l⁻¹
Number of replicates per concentration	4
Number of organisms per replicate	25
Nature of test system (static, semi-static or flow-through, duration, feeding)	Semi-static, renewal every 24 h
Measurement of exposure concentrations	No
Measurement of water quality parameters	Temp = $25 \pm 1^{\circ}C$
Test validity criteria satisfied	No
Water quality criteria satisfied	Not stated
Study conducted to GLP	Not stated
Comments	Overall survival of eggs to hatching in controls 81%. Control survival lower than some treatments (other pesticides and combinations). With respect to chlorothalonil, no statistical effect on survivorship, time to hatch or fry size. Activity level, as measured by swimming distance was reduced. Sex ratio 1:1 in controls and 1:2 in favour of females in chlorothalonil treatment.

Reliability of study	Unreliable
Relevance of study	Relevant
Klimisch Code	3

ANNEX II Summary data from OPP 2007

This annex contains information taken from:

 Ecotoxicity Database – an online US EPA database held by the Office of Pesticide Programs that summarises ecotoxicological data used by the EPA for ecotoxicological assessments. Consists primarily of the endpoint data submitted in support of registration and reregistration of pesticide products (OPP 2007).

Data in the summary tables below are classified by the US EPA as 'core' if all essential information was reported and the study was performed according to recommended US EPA or American Society for Testing Materials (ASTM) methodology. Minor inconsistencies with standard recommended procedures may be apparent, but the deviations do not detract from the study's soundness or intent. Studies within this category fulfil the basic requirements of current FIFRA guidelines and are acceptable for use in a risk assessment (equivalent Klimisch code 1). Data not meeting this requirement are classified as either supplemental (Klimisch code 2) or invalid (Klimisch code 3). Supplemental studies are considered scientifically sound, however they were performed under conditions that deviated substantially from recommended protocols. Examples of the conditions that may place a study in this category include: non-native species, tested organisms were older/younger than guideline recommendations, deviations from recommended water quality characteristics (this list is not exhaustive). Where this data has been reported in Tables 2.9 to 2.12 the following notation has been used to identify the US EPA classification: c = core and s = supplemental.

Chemica I	Species	Test	Age	Duration	Additional information	LOEC (µg l ⁻¹)	NOEC (μg l ⁻¹)	Reference as cited in OPP 2007
Freshwate	er – algae (Table 29)							
97%	Pseudokirch-neriella subcapitata	[123-2] static		5 days		100	50	Ref No 42432801: Malcolm Pernie Inc, New York, USA 1992
98.1%	Navicula pelliculosa	[123-2] static		5 days		-	3.9	EPA Identification 44908105: Brixham Laboratory, Brixham UK 1998
Freshwate	er – higher plants (Tabl	e 2.9)						
98.1%	Lemna gibba	[123-2] static		14 days		-	290	EPA Identification 44908102:Brixham Laboratory, Brixham, UK 1998
Freshwate	er – invertebrates (Tabl	e 2.9)			-			
99.8%	Daphnia magna	[72-4b] static renewal		21 days	Endpoint survival, cumulative numbers of offspring per female	79	39	Ref No 00115107: EG & G Corp (Diamond Shamrock) 1981
Freshwate	er – fish (Table 2.9)							
96%	Pimephales promelas	[74-4a] flow- through	ErlyLf	168 days	Mean measured test concentrations: 0.6, 1.4, 3.0, 6.5, 16 μ g a.i. I ⁻¹ plus dilution water-only and a solvent control (acetone) (HSE 2002)	6.5	3	Ref 00030391: EG & G Corp (Diamond Shamrock) 1980
	– algae (Table 2.11)							
98.1%	Skeletonema costatum	[123-2] static		14 days		-	5.9	EPA Identification: Brixham Laboratory, Brixham, UK 1998
Saltwater	– invertebrates (Table	 2.11)						

Table A1Summary of most sensitive chronic data taken from OPP 2007 with additional information from other compendium reports

Chemica I	Species	Test	Age	Duration	Additional information	LOEC (µg l ⁻¹)	NOEC (µg l ⁻¹)	Reference as cited in OPP 2007
98%	Americamysis bahia	Life cycle- flow- through	< 24 h	28 days	2 replicates per conc; 30 organisms per replicate. Mean measured test concentrations 0.65, 0.83, 1.2, 3.0, 5.7 μ g l ⁻¹ + dilution water-only control and a solvent control (acetone). No treatment related effects on adult, survival, behaviour or growth. Signif. reduction in no. of offspring per female at ≥ 1.2 μ g l ⁻¹ (HSE 2002)	1.2	0.83	Ref No 42433807: Springborn Laboratory Inc, MA 1991

(m) = measured; AM = artificial medium; NR = not reported

MATC = maximum acceptable toxicant concentration

[72-4a] freshwater or marine/estuarine fish early life stage chronic toxicity using TGAI or TEP (FIFRA 158.490) [72-4b] freshwater invertebrate life cycle chronic toxicity using TGAI or TEP (FIFRA 158.490)

[123 –2] Tier II Aquatic Plant Growth – multi-dose (FIFRA 158.540) CI = confidence interval

TEP = typical end use product TGAI = technical grade of the active ingredient

Table A2Summary of most sensitive acute data taken from OPP (2007)

Chemica I a.i.%	Species	Test	Organism age/ size	Duration	LC/EC50 (µg l ⁻¹) (95% Cl)	NOEC (µg l⁻¹)	Curve slope	Reference (as cited in OPP 2007)
Freshwate	er – algae (Table 2.10)							
97.9%	Pseudokirc-neriella subcapitata	[123-2] static		5 days	190 (180 – 210)	50	NR	Ref No 42432801: Malcolm Pernie Inc, New York, USA 1992
98.1%	Navicula pelliculosa	[123-2] static		5 days	14 (12 -17)	3.9	4.49	EPA Identification 44908105: Brixham Laboratory, Brixham UK 1998
	er – higher plants (Table	2.10)						
98.1%	Lemna gibba	[123-2] static		14 days	630 (550 – 730)	290	5.3	EPA Identification 44908102:Brixham Laboratory, Brixham, UK 1998
	e <mark>r – invertebrate (Table 2</mark>	/	-					-
96% Technical grade	Daphnia magna	[72-2] static; not GLP, unmeasured concentrations 22°C; pH 7.2-7.4; DO 7.9-8.8 mg Γ^1 ; hardness 60 mg CaCO ₃ Γ^1 (HSE 2002)	< 24 h	48 hours	70 (34.2 – 143)	6.8	NR	Ref No 00068754: EG & G Corp (Diamond Shamrock) 1977
54% (Bravo 720)	Daphnia magna	[72-2b] flow-through; GLP, measured concs. 20°C; pH 8.1-8.3; hardness170- 180 mg CaCO3 I-1; DO 93 -105% saturation (HSE 2002)	1 st instar	48 hours	97 (86 – 108)	49	7.9	Ref No 42433806: Springborn Laboratory Inc., MA 1992
Freshwate	er – fish (Table 2.10)							
96%	Oncorhynchus mykiss	[72-1] static	Juv	96 hours	42 (32 – 68)	32	NR	Ref No 00056486: EG & G Corp (Diamond Shamrock 1980 (supplemental)

Chemica I a.i.%	Species	Test	Organism age/ size	Duration	LC/EC50 (µg l ⁻¹) (95% Cl)	NOEC (µg l⁻¹)	Curve slope	Reference (as cited in OPP 2007)
96%	Ictalurus punctatus	[72-1] static	Juv	96 hours	43 (26 – 70)	26	NR	RefNo00030390:DiamondShamrockAgriculturalLaboratory1980
98%	Lepomis macrochirus	[72-1] static	0.39 g	96 hours	51 (45 -57)	0.37	NR	Ref No 00127862
96%	Lepomis macrochirus	[72-1] static	Juv	96 hours	60 (52 – 78)	28	NR	Ref No 00041439: EG & G Corp (Diamond Shamrock) 1980
99.7%	Lepomis macrochirus	[72-1] static	0.9 g	96 hours	84 (71 – 99)	49	NR	Ref No 00029410: Diamond Shamrock Agricultural Laboratory 1979
54% (Bravo 720)	Oncorhynchus mykiss	[72-1] flow-through; GLP; mean measured concentrations 6.5, 10.4, 15.8, 26.7,48.5 μ g l ⁻¹ . pH 7; 12°C; hardness 39 mg CaCO ₃ l ⁻¹ ; DO 89-94% saturation (HSE 2002)	0.56 g	96 hours	33 (26 – 48)	16	NR	Ref No 43302101: Springborn Laboratory Inc., MD 1994
54% (Bravo 720)	Lepomis macrochirus	[72-1] flow-through	0.39 g	96 hours	26 (22.1 – 32)	15	NR	Ref No 42433804: Springborn Laboratory Inc., MA 1992
75% (Bravo W-75)	Oncorhynchus mykiss	[72-1] static	1.4 g	48 hours	152 (134 – 173)	< 140	NR	Ref No 00087304: Agricultural Research Center, USDA, Beltsville, MD.1972 (supplemental)
75% (Bravo W-75)	Oncorhynchus mykiss	[72-1] static	0.76 g	96 hours	77 (73 – 81)	65	NR	Ref No 00087303: Agricultural Research Center, USDA, Beltsville, MD. 1972

Chemica I a.i.%	Species	Test	Organism age/ size	Duration	LC/EC50 (µg l ⁻¹) (95% Cl)	NOEC (µg l ⁻¹)	Curve slope	Reference (as cited in OPP 2007)
75% (Bravo W-75)	Lepomis macrochirus	[72-1] static	35+ mm	24 hours	125	65	NR	Ref No 00087258: Agricultural Research Center, USDA, Beltsville, MD 1973 (supplemental)
Saltwater -	– algae (Table 2.12)							
98.1%	Skeletonema costatum	[123-2] static		14 days	13 (12 – 14)	5.9	NR	EPA Identification: Brixham Laboratory, Brixham, UK 1998
Saltwater -	– invertebrates (Table 2.	12)						
Technical grade	Crassostrea virginica	[72-3b] flow-through Shell deposition 27‰ salinity; T=29°C (EHC 1996)	Spat	96 hours	26	NR	NR	Ref No 00138143 (RED) EPA Identification 40228401 EPA Labs
Technical grade	Penaeus duorarum	[72-3c] static; unmeasured concentrations 75, 100, 150, 200, 300 μ g l ⁻¹ + dilution water-only & solvent (acetone) controls. 6 replicates; 2 organisms per replicate (HSE 2002)	Juv	96 hours	165 (100 -270)	75	NR	Ref No 00127864: EG & G Corp (Diamond Shamrock) 1982
Technical grade	Penaeus duorarum	[72-3] flow-through	Juv	48 hours	320			EPA identification 40228401: EPA Labs, Beltsville, Md or Gulfbreeze, Florida USA 1986 (supplemental)
75% (Bravo)	Cancer magister	[72-3c] semi –static (24 hr renewal); T=13°C 25 ‰ salinity (ECH 1996)	larvae	96 hours	140	-	-	EPA Identification 00127865: study date 1976 supplemental

Chemica I a.i.%	Species	Test	Organism age/ size	Duration	LC/EC50 (μg l ⁻¹) (95% Cl)	NOEC (µg l ⁻¹)	Curve slope	Reference (as cited OPP 2007)
Saltwater -	– fish (Table 2.12)							
Technical grade	Cyprinodon variegatus	[72-3a] static; unmeasured concentrations 20, 30, 45, 65, 90 μ g l ⁻¹ + dilution water- only and solvent controls. 2 replicates, 10 organisms per replicate (HSE 2002)		96 hours	32 (30 – 36)	20	NR	Ref No 0012786 Diamond Shamro Agricultural Laborato 1982

[72-1] Freshwater fish acute-warm and coldwater species with TGAI or TEP (FIFRA 158.490) [72-2] Freshwater invertebrate acute TGAI or TEP [72-3] Estuarine/marine fish, shellfish, shrimp acute using TGAI or TEP [122-2] Tier I Aquatic Plant Growth – single dose (FIFRA 158.540)

[122 –2] Tier II Aquatic Plant Growth – multi-dose (FIFRA 158.540) CI = confidence interval

TEP = typical end use product

TGAI = technical grade of the active ingredient

m = measured, n = nominal